20 research outputs found

    Validity of inertial sensor based 3D joint kinematics of static and dynamic sport and physiotherapy specific movements

    Get PDF
    3D joint kinematics can provide important information about the quality of movements. Optical motion capture systems (OMC) are considered the gold standard in motion analysis. However, in recent years, inertial measurement units (IMU) have become a promising alternative. The aim of this study was to validate IMU-based 3D joint kinematics of the lower extremities during different movements. Twenty-eight healthy subjects participated in this study. They performed bilateral squats (SQ), single-leg squats (SLS) and countermovement jumps (CMJ). The IMU kinematics was calculated using a recently-described sensor-fusion algorithm. A marker based OMC system served as a reference. Only the technical error based on algorithm performance was considered, incorporating OMC data for the calibration, initialization, and a biomechanical model. To evaluate the validity of IMU-based 3D joint kinematics, root mean squared error (RMSE), range of motion error (ROME), Bland-Altman (BA) analysis as well as the coefficient of multiple correlation (CMC) were calculated. The evaluation was twofold. First, the IMU data was compared to OMC data based on marker clusters; and, second based on skin markers attached to anatomical landmarks. The first evaluation revealed means for RMSE and ROME for all joints and tasks below 3°. The more dynamic task, CMJ, revealed error measures approximately 1° higher than the remaining tasks. Mean CMC values ranged from 0.77 to 1 over all joint angles and all tasks. The second evaluation showed an increase in the RMSE of 2.28°– 2.58° on average for all joints and tasks. Hip flexion revealed the highest average RMSE in all tasks (4.87°– 8.27°). The present study revealed a valid IMU-based approach for the measurement of 3D joint kinematics in functional movements of varying demands. The high validity of the results encourages further development and the extension of the present approach into clinical settings

    Validation and initial applications of a magnetometer-free inertial sensor based motion capture system for the human lower body

    No full text
    Die Anwendung von tragbare Sensorik im Bereich der Bewegungsanalyse ist mittlerweile zu einem zentralen Bestandteil in der Medizin und im Sport geworden. In den letzten Jahren befinden sich vor allem Inertiale Messeinheiten (IMU) auf dem Vormarsch. Durch die Fusion mehrerer Sensoren erlauben es IMU Systeme komplexe Informationen wie etwa Gelenkwinkel und spatio-temporale Parameter (STP) zu gewinnen. Viele der heute verfügbaren IMU Systeme befinden sich in der Entwicklungsphase und wurden noch nicht adäquat für den klinischen oder den sportspezifischen Einsatz auf Validität und Reliabilität getestet. Dieses Prozedere ist nach wissenschaftlichen Gesichtspunkten unerlässlich bevor ein System zur biomechanischen Analyse herangezogen und basierend auf dessen Ergebnissen etwa klinische Entscheidungen getroffen werden können. Folglich wurde in der vorliegenden Arbeit ein neu entwickeltes IMU System, dass, basierend auf Akzelerometer und Gyroskop Daten, spatio-temporale Gangparameter und Gelenkswinkel der unteren Extremität berechnet, hinsichtlich dieser Kriterien evaluiert. Zu diesem Zweck wurden mit Hilfe dieses IMU Systems Daten von unterschiedlich dynamischen Bewegungen in zwei verschiedenen Probandengruppen, einer gesunden, jungen Gruppe und einer Gruppe mit Patienten nach totaler Hüftarthroplastik (THA), aufgenommen. Daraus wurden die 3D Winkel des Hüft-, Knie- und Sprunggelenks sowie die globale Bewegung des Beckens berechnet. Weiter wurden gangspezifische STP, z.B. Schrittlänge, Schreitlänge, Kadenz, berechnet. Aber auch STP die typischerweise nur mit alternativen Systemen zuverlässig zu messen sind, z.B. Spurbreite und Durchschwungbreite, wurden erhoben. Die Ergebnisse aus dem IMU System wurden gegen ein etabliertes Referenzsystem im Bereich der Bewegungsanalyse, in Form eines markerbasierten stereophotogrammetrischen Systems, verglichen. Die vorliegenden Ergebnisse zeigen in beiden Gruppen eine starke Korrelation zwischen den Systemen in den Gelenkwinkeln der sagittalen und frontalen Ebene, sowie den STP. Es zeigte sich aber auch, dass die Übereinstimmung des IMU Systems mit dem kamerabasierten System vor allem in den Winkeln der Transversalebene, i.e. Rotationsbewegungen, und hier vor allem im Bereich des Kniegelenks leicht abnimmt. Weiter zeigte sich, dass die Genauigkeit des IMU Systems bei dynamischeren Bewegungen ebenfalls abnimmt. Bezüglich der Test-Retest Reliabilität zeigen die aktuellen Daten eine hohe Verlässlichkeit der Messergebnisse. In einem zweiten Schritt wurde mit Hilfe der Daten des nun validierten IMU Systems versucht pathologische Gangmuster, in dem konkreten Fall das Gangmuster von Patienten nach THA, von physiologischen zu differenzieren. Hierzu wurde ein Algorithmus des maschinellen Lernens angewandt um an Hand von ausgewählten, klinisch relevanten Parametern eine Klassifikation vorzunehmen. Diese Methode wurde ebenfalls sowohl an Hand von IMU Daten und Daten des Referenzsystems evaluiert. Es zeigte sich kein Unterschied in der Klassifikationsgenauigkeit zwischen den Systemen. Die Genauigkeit, mit der pathologische Gangmuster erkannt wurden, lag in beiden Fällen über 96 %. Die vorliegende Arbeit beschreibt im Detail die Vor- und Nachteile eines neu entwickelten, mobilen IMU Systems, das komplexe Parameter der Kinematik mit hoher Genauigkeit und Verlässlichkeit erfasst. Besonders die erfolgreiche Evaluierung dieses Systems in einer klinisch relevanten Applikation zeigt das große Potential von IMU Systemen in der klinischen Anwendung

    Validation and initial applications of a magnetometer-free inertial sensor based motion capture system for the human lower body

    No full text
    Die Anwendung von tragbare Sensorik im Bereich der Bewegungsanalyse ist mittlerweile zu einem zentralen Bestandteil in der Medizin und im Sport geworden. In den letzten Jahren befinden sich vor allem Inertiale Messeinheiten (IMU) auf dem Vormarsch. Durch die Fusion mehrerer Sensoren erlauben es IMU Systeme komplexe Informationen wie etwa Gelenkwinkel und spatio-temporale Parameter (STP) zu gewinnen. Viele der heute verfügbaren IMU Systeme befinden sich in der Entwicklungsphase und wurden noch nicht adäquat für den klinischen oder den sportspezifischen Einsatz auf Validität und Reliabilität getestet. Dieses Prozedere ist nach wissenschaftlichen Gesichtspunkten unerlässlich bevor ein System zur biomechanischen Analyse herangezogen und basierend auf dessen Ergebnissen etwa klinische Entscheidungen getroffen werden können. Folglich wurde in der vorliegenden Arbeit ein neu entwickeltes IMU System, dass, basierend auf Akzelerometer und Gyroskop Daten, spatio-temporale Gangparameter und Gelenkswinkel der unteren Extremität berechnet, hinsichtlich dieser Kriterien evaluiert. Zu diesem Zweck wurden mit Hilfe dieses IMU Systems Daten von unterschiedlich dynamischen Bewegungen in zwei verschiedenen Probandengruppen, einer gesunden, jungen Gruppe und einer Gruppe mit Patienten nach totaler Hüftarthroplastik (THA), aufgenommen. Daraus wurden die 3D Winkel des Hüft-, Knie- und Sprunggelenks sowie die globale Bewegung des Beckens berechnet. Weiter wurden gangspezifische STP, z.B. Schrittlänge, Schreitlänge, Kadenz, berechnet. Aber auch STP die typischerweise nur mit alternativen Systemen zuverlässig zu messen sind, z.B. Spurbreite und Durchschwungbreite, wurden erhoben. Die Ergebnisse aus dem IMU System wurden gegen ein etabliertes Referenzsystem im Bereich der Bewegungsanalyse, in Form eines markerbasierten stereophotogrammetrischen Systems, verglichen. Die vorliegenden Ergebnisse zeigen in beiden Gruppen eine starke Korrelation zwischen den Systemen in den Gelenkwinkeln der sagittalen und frontalen Ebene, sowie den STP. Es zeigte sich aber auch, dass die Übereinstimmung des IMU Systems mit dem kamerabasierten System vor allem in den Winkeln der Transversalebene, i.e. Rotationsbewegungen, und hier vor allem im Bereich des Kniegelenks leicht abnimmt. Weiter zeigte sich, dass die Genauigkeit des IMU Systems bei dynamischeren Bewegungen ebenfalls abnimmt. Bezüglich der Test-Retest Reliabilität zeigen die aktuellen Daten eine hohe Verlässlichkeit der Messergebnisse. In einem zweiten Schritt wurde mit Hilfe der Daten des nun validierten IMU Systems versucht pathologische Gangmuster, in dem konkreten Fall das Gangmuster von Patienten nach THA, von physiologischen zu differenzieren. Hierzu wurde ein Algorithmus des maschinellen Lernens angewandt um an Hand von ausgewählten, klinisch relevanten Parametern eine Klassifikation vorzunehmen. Diese Methode wurde ebenfalls sowohl an Hand von IMU Daten und Daten des Referenzsystems evaluiert. Es zeigte sich kein Unterschied in der Klassifikationsgenauigkeit zwischen den Systemen. Die Genauigkeit, mit der pathologische Gangmuster erkannt wurden, lag in beiden Fällen über 96 %. Die vorliegende Arbeit beschreibt im Detail die Vor- und Nachteile eines neu entwickelten, mobilen IMU Systems, das komplexe Parameter der Kinematik mit hoher Genauigkeit und Verlässlichkeit erfasst. Besonders die erfolgreiche Evaluierung dieses Systems in einer klinisch relevanten Applikation zeigt das große Potential von IMU Systemen in der klinischen Anwendung

    Validity of inertial sensor based 3D joint kinematics of static and dynamic sport and physiotherapy specific movements.

    No full text
    3D joint kinematics can provide important information about the quality of movements. Optical motion capture systems (OMC) are considered the gold standard in motion analysis. However, in recent years, inertial measurement units (IMU) have become a promising alternative. The aim of this study was to validate IMU-based 3D joint kinematics of the lower extremities during different movements. Twenty-eight healthy subjects participated in this study. They performed bilateral squats (SQ), single-leg squats (SLS) and countermovement jumps (CMJ). The IMU kinematics was calculated using a recently-described sensor-fusion algorithm. A marker based OMC system served as a reference. Only the technical error based on algorithm performance was considered, incorporating OMC data for the calibration, initialization, and a biomechanical model. To evaluate the validity of IMU-based 3D joint kinematics, root mean squared error (RMSE), range of motion error (ROME), Bland-Altman (BA) analysis as well as the coefficient of multiple correlation (CMC) were calculated. The evaluation was twofold. First, the IMU data was compared to OMC data based on marker clusters; and, second based on skin markers attached to anatomical landmarks. The first evaluation revealed means for RMSE and ROME for all joints and tasks below 3°. The more dynamic task, CMJ, revealed error measures approximately 1° higher than the remaining tasks. Mean CMC values ranged from 0.77 to 1 over all joint angles and all tasks. The second evaluation showed an increase in the RMSE of 2.28°- 2.58° on average for all joints and tasks. Hip flexion revealed the highest average RMSE in all tasks (4.87°- 8.27°). The present study revealed a valid IMU-based approach for the measurement of 3D joint kinematics in functional movements of varying demands. The high validity of the results encourages further development and the extension of the present approach into clinical settings

    Validity, Test-Retest Reliability and Long-Term Stability of Magnetometer Free Inertial Sensor Based 3D Joint Kinematics

    No full text
    The present study investigates an algorithm for the calculation of 3D joint angles based on inertial measurement units (IMUs), omitting magnetometer data. Validity, test-retest reliability, and long-term stability are evaluated in reference to an optical motion capture (OMC) system. Twenty-eight healthy subjects performed a 6 min walk test. Three-dimensional joint kinematics of the lower extremity was recorded simultaneously by means of seven IMUs and an OptiTrack OMC system. To evaluate the performance, the root mean squared error (RMSE), mean range of motion error (ROME), coefficient of multiple correlations (CMC), Bland-Altman (BA) analysis, and intraclass correlation coefficient (ICC) were calculated. For all joints, the RMSE was lower than 2.40°, and the ROME was lower than 1.60°. The CMC revealed good to excellent waveform similarity. Reliability was moderate to excellent with ICC values of 0.52–0.99 for all joints. Error measures did not increase over time. When considering soft tissue artefacts, RMSE and ROME increased by an average of 2.2° ± 1.5° and 2.9° ± 1.7°. This study revealed an excellent correspondence of a magnetometer-free IMU system with an OMC system when excluding soft tissue artefacts

    Curvature Detection with an Optoelectronic Measurement System Using a Self-Made Calibration Profile

    No full text
    So far, no studies of material deformations (e.g., bending of sports equipment) have been performed to measure the curvature (w″) using an optoelectronic measurement system OMS. To test the accuracy of the w″ measurement with an OMS (Qualisys), a calibration profile which allowed to: (i) differentiates between three w″ (0.13˙ m−1, 0.2 m−1, and 0.4 m−1) and (ii) to explore the influence of the chosen infrared marker distances (50 mm, 110 mm, and 170 mm) was used. The profile was moved three-dimensional at three different mean velocities (vzero = 0 ms−1, vslow = 0.2 ms−1, vfast  = 0.4 ms−1) by an industrial robot. For the accuracy assessment, the average difference between the known w″ of the calibration profile and the detected w″ from the OMS system, the associated standard deviation (SD) and the measuring point with the largest difference compared to the defined w″ (=maximum error) were calculated. It was demonstrated that no valid w″ can be measured at marker distances of 50 mm and only to a limited extent at 110 mm. For the 170 mm marker distance, the average difference (±SD) between defined and detected w″ was less than 1.1 ± 0.1 mm−1 in the static and not greater than −3.8 ± 13.1 mm−1 in the dynamic situations. The maximum error in the static situation was small (4.0 mm−1), while in the dynamic situations there were single interfering peaks causing the maximum error to be larger (−30.2 mm−1 at a known w″ of 0.4 m−1). However, the Qualisys system measures sufficiently accurately to detect curvatures up to 0.13˙ m−1 at a marker distance of 170 mm, but signal fluctuations due to marker overlapping can occur depending on the direction of movement of the robot arm, which have to be taken into account

    Interpretability of Input Representations for Gait Classification in Patients after Total Hip Arthroplasty

    No full text
    Many machine learning models show black box characteristics and, therefore, a lack of transparency, interpretability, and trustworthiness. This strongly limits their practical application in clinical contexts. For overcoming these limitations, Explainable Artificial Intelligence (XAI) has shown promising results. The current study examined the influence of different input representations on a trained model’s accuracy, interpretability, as well as clinical relevancy using XAI methods. The gait of 27 healthy subjects and 20 subjects after total hip arthroplasty (THA) was recorded with an inertial measurement unit (IMU)-based system. Three different input representations were used for classification. Local Interpretable Model-Agnostic Explanations (LIME) was used for model interpretation. The best accuracy was achieved with automatically extracted features (mean accuracy Macc = 100%), followed by features based on simple descriptive statistics (Macc = 97.38%) and waveform data (Macc = 95.88%). Globally seen, sagittal movement of the hip, knee, and pelvis as well as transversal movement of the ankle were especially important for this specific classification task. The current work shows that the type of input representation crucially determines interpretability as well as clinical relevance. A combined approach using different forms of representations seems advantageous. The results might assist physicians and therapists finding and addressing individual pathologic gait pattern

    Interpretability of Input Representations for Gait Classification in Patients after Total Hip Arthroplasty

    No full text
    Many machine learning models show black box characteristics and, therefore, a lack of transparency, interpretability, and trustworthiness. This strongly limits their practical application in clinical contexts. For overcoming these limitations, Explainable Artificial Intelligence (XAI) has shown promising results. The current study examined the influence of different input representations on a trained model’s accuracy, interpretability, as well as clinical relevancy using XAI methods. The gait of 27 healthy subjects and 20 subjects after total hip arthroplasty (THA) was recorded with an inertial measurement unit (IMU)-based system. Three different input representations were used for classification. Local Interpretable Model-Agnostic Explanations (LIME) was used for model interpretation. The best accuracy was achieved with automatically extracted features (mean accuracy Macc = 100%), followed by features based on simple descriptive statistics (Macc = 97.38%) and waveform data (Macc = 95.88%). Globally seen, sagittal movement of the hip, knee, and pelvis as well as transversal movement of the ankle were especially important for this specific classification task. The current work shows that the type of input representation crucially determines interpretability as well as clinical relevance. A combined approach using different forms of representations seems advantageous. The results might assist physicians and therapists finding and addressing individual pathologic gait pattern

    Towards Inertial Sensor Based Mobile Gait Analysis: Event-Detection and Spatio-Temporal Parameters

    No full text
    The aim of this study was to assess the validity and test-retest reliability of an inertial measurement unit (IMU) system for gait analysis. Twenty-four healthy subjects conducted a 6-min walking test and were instrumented with seven IMUs and retroreflective markers. A kinematic approach was used to estimate the initial and terminal contact events in real-time. Based on these events twelve spatio-temporal parameters (STP) were calculated. A marker based optical motion capture (OMC) system provided the reference. Event-detection rate was about 99%. Detection offset was below 0.017 s. Relative root mean square error (RMSE) ranged from 0.90% to 4.40% for most parameters. However, the parameters that require spatial information of both feet showed higher errors. Step length showed a relative RMSE of 6.69%. Step width and swing width revealed the highest relative RMSE (34.34% and 35.20%). Test-retest results ranged from 0.67 to 0.92, except for the step width (0.25). Summarizing, it appears that the parameters describing the lateral distance between the feet need further improvement. However, the results of the validity and reliability of the IMU system encourage its validation in clinical settings as well as further research
    corecore