57 research outputs found

    A source of polarization-entangled photon pairs interfacing quantum memories with telecom photons

    Full text link
    We present a source of polarization-entangled photon pairs suitable for the implementation of long-distance quantum communication protocols using quantum memories. Photon pairs with wavelengths 883 nm and 1338 nm are produced by coherently pumping two periodically poled nonlinear waveguides embedded in the arms of a polarization interferometer. Subsequent spectral filtering reduces the bandwidth of the photons to 240 MHz. The bandwidth is well-matched to a quantum memory based on an Nd:YSO crystal, to which, in addition, the center frequency of the 883 nm photons is actively stabilized. A theoretical model that includes the effect of the filtering is presented and accurately fits the measured correlation functions of the generated photons. The model can also be used as a way to properly assess the properties of the source. The quality of the entanglement is revealed by a visibility of V = 96.1(9)% in a Bell-type experiment and through the violation of a Bell inequality.Comment: 15 pages, 8 figures, 3 table

    Waveguide-based OPO source of entangled photon pairs

    Full text link
    In this paper we present a compact source of narrow-band energy-time entangled photon pairs in the telecom regime based on a Ti-indiffused Periodically Poled Lithium Niobate (PPLN) waveguide resonator, i.e. a waveguide with end-face dielectric multi-layer mirrors. This is a monolithic doubly resonant Optical Parametric Oscillator (OPO) far below threshold, which generates photon pairs by Spontaneous Parametric Down Conversion (SPDC) at around 1560nm with a 117MHz (0.91 pm)- bandwidth. A coherence time of 2.7 ns is estimated by a time correlation measurement and a high quality of the entangled states is confirmed by a Bell-type experiment. Since highly coherent energy-time entangled photon pairs in the telecom regime are suitable for long distance transmission and manipulation, this source is well suited to the requirements of quantum communication.Comment: 13 page

    Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory

    Full text link
    In quantum teleportation, the state of a single quantum system is disembodied into classical information and purely quantum correlations, to be later reconstructed onto a second system that has never directly interacted with the first one. This counterintuitive phenomenon is a cornerstone of quantum information science due to its essential role in several important tasks such as the long-distance transmission of quantum information using quantum repeaters. In this context, a challenge of paramount importance is the distribution of entanglement between remote nodes, and to use this entanglement as a resource for long-distance light-to-matter quantum teleportation. Here we demonstrate quantum teleportation of the polarization state of a telecom-wavelength photon onto the state of a solid-state quantum memory. Entanglement is established between a rare-earth-ion doped crystal storing a single photon that is polarization-entangled with a flying telecom-wavelength photon. The latter is jointly measured with another flying qubit carrying the polarization state to be teleported, which heralds the teleportation. The fidelity of the polarization state of the photon retrieved from the memory is shown to be greater than the maximum fidelity achievable without entanglement, even when the combined distances travelled by the two flying qubits is 25 km of standard optical fibre. This light-to-matter teleportation channel paves the way towards long-distance implementations of quantum networks with solid-state quantum memories.Comment: 5 pages (main text) + appendix (10 pages

    Conditional detection of pure quantum states of light after storage in a waveguide

    Full text link
    Conditional detection is an important tool to extract weak signals from a noisy background and is closely linked to heralding, which is an essential component of protocols for long distance quantum communication and distributed quantum information processing in quantum networks. Here we demonstrate the conditional detection of time-bin qubits after storage in and retrieval from a photon-echo based waveguide quantum memory. Each qubit is encoded into one member of a photon-pair produced via spontaneous parametric down conversion, and the conditioning is achieved by the detection of the other member of the pair. Performing projection measurements with the stored and retrieved photons onto different bases we obtain an average storage fidelity of 0.885 \pm 0.020, which exceeds the relevant classical bounds and shows the suitability of our integrated light-matter interface for future applications of quantum information processing.Comment: 4 pages, 4 figure
    • …
    corecore