172 research outputs found

    Conclusions

    Get PDF
    Dieser Artikel unterliegt bis zum 01.01.2023 einem Embargo

    Anisotropic chemical shifts and spin rotation constants of 15N from liquid and solid state NMR: Nitrobenzene

    Get PDF
    The study of the 15N spin-lattice relaxation time T1 in nitrobenzene at 14 and 32 MHz from −10 to 60°C showed that at 32 MHz relaxation due to anisotropic chemical shift is predominant. At low frequencies, the relaxation is caused mainly by spin rotation and at low temperature also by intermolecular dipole-dipole interaction. From the powder spectrum in solid nitrobenzene, the principal elements of the shielding tensor σ were obtained: σxx = −273 ± 10 ppm, σyy = +94 ± 10 ppm, and σzz = +156 ± 10 ppm relative to liquid nitrobenzene, Δσ = σ xx - ½(σ yy + σ zz) = -398 ± 20ppm. From the almost axially symmetric σ -tensor, the spin rotation constants were calculated: C‖ = 11.4 ± 1.5 kHz and C⊥ = 1.35 ± 0.5 kHz, where C‖ is the component parallel to the twofold axis of the molecule. These values for Δσ and the spin rotation constants are in excellent agreement with those obtained by analysis of the relaxation data. A comparison of anisotropic chemical shifts and spin rotation constants for 15N and 13C in isoelectronic compounds is given

    Pediatric reference intervals for thyroid hormone levels from birth to adulthood: a retrospective study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Age- and sex-specific reference intervals are an important prerequisite for interpreting thyroid hormone measurements in children. However, only few studies have reported age- and sex-specific pediatric reference values for TSH<sub>basal </sub>(TSH), free T3 (fT3), and free T4 (fT4) so far. Reference intervals are known to be method- and population-dependent. The aim of our study was to establish reference intervals for serum TSH, fT3, and fT4 from birth to 18 years and to assess sex differences.</p> <p>Methods</p> <p>2,194 thyroid hormone tests obtained from a hospital-based pediatric population were included into our retrospective analysis. Individuals with diagnoses or medications likely to affect thyroid function were primarily excluded, as well as the diagnostic groups, if different from the purely healthy subgroup (n = 414). Age groups were ranging from 1 day to 1 month, 1 – 12 months, and 1 – 5, 6 – 10, 11 – 14, and 15 – 18 years, respectively. Levels of fT3, fT4 and TSH were measured on Advia<sup>® </sup>Centaur™ automated immunoassay system.</p> <p>Results</p> <p>The final sample size for reference data creation was 1,209 for TSH, 1,395 for fT3, and 1,229 for fT4. Median and 2.5/10/25/75/90/97.5 percentiles were calculated for each age group. Males had greater mean fT3 concentrations than females (p < 0.001). No sex-differences were found for TSH and fT4 between age-matched serum samples. Median concentrations of fT3, fT4 and TSH were greatest during the first month of life, followed by a continuous decline with age.</p> <p>Conclusion</p> <p>Our results corroborate those of previous studies showing that thyroid hormone levels change markedly during childhood, and that adult reference intervals are not universally applicable to children. Moreover, differences of our reference intervals compared to previous studies were observed, likely caused by different antibody characteristics of various analytical methods, different populations or undefined geographic covariates, e.g. iodine and selenium status.</p
    • …
    corecore