102 research outputs found

    McFSM: Globally Taming Complex Systems

    Full text link
    Industrial computing devices, in particular cyber-physical, real-time and safety-critical systems, focus on reacting to external events and the need to cooperate with other devices to create a functional system. They are often implemented with languages that focus on a simple, local description of how a component reacts to external input data and stimuli. Despite the trend in modern software architectures to structure systems into largely independent components, the remaining interdependencies still create rich behavioural dynamics even for small systems. Standard and industrial programming approaches do usually not model or extensively describe the global properties of an entire system. Although a large number of approaches to solve this dilemma have been suggested, it remains a hard and error-prone task to implement systems with complex interdependencies correctly. We introduce multiple coupled finite state machines (McFSMs), a novel mechanism that allows us to model and manage such interdependencies. It is based on a consistent, well-structured and simple global description. A sound theoretical foundation is provided, and associated tools allow us to generate efficient low-level code in various programming languages using model-driven techniques. We also present a domain specific language to express McFSMs and their connections to other systems, to model their dynamic behaviour, and to investigate their efficiency and correctness at compile-time.Comment: To appear in SEsCPS@ICSE201

    Multi-mode states in decoy-based quantum key distribution protocols

    Full text link
    Every security analysis of quantum key distribution (QKD) relies on a faithful modeling of the employed quantum states. Many photon sources, like for instance a parametric down conversion (PDC) source, require a multi-mode description, but are usually only considered in a single-mode representation. In general, the important claim in decoy-based QKD protocols for indistinguishability between signal and decoy states does not hold for all sources. We derive new bounds on the single photon transmission probability and error rate for multi-mode states, and apply these bounds to the output state of a PDC source. We observe two opposing effects on the secure key rate. First, the multi-mode structure of the state gives rise to a new attack that decreases the key rate. Second, more contributing modes change the photon number distribution from a thermal towards a Poissonian distribution, which increases the key rate

    Observing Custom Software Modifications: A Quantitative Approach of Tracking the Evolution of Patch Stacks

    Full text link
    Modifications to open-source software (OSS) are often provided in the form of "patch stacks" - sets of changes (patches) that modify a given body of source code. Maintaining patch stacks over extended periods of time is problematic when the underlying base project changes frequently. This necessitates a continuous and engineering-intensive adaptation of the stack. Nonetheless, long-term maintenance is an important problem for changes that are not integrated into projects, for instance when they are controversial or only of value to a limited group of users. We present and implement a methodology to systematically examine the temporal evolution of patch stacks, track non-functional properties like integrability and maintainability, and estimate the eventual economic and engineering effort required to successfully develop and maintain patch stacks. Our results provide a basis for quantitative research on patch stacks, including statistical analyses and other methods that lead to actionable advice on the construction and long-term maintenance of custom extensions to OSS

    A Dual Model of Open Source License Growth

    Full text link
    Every open source project needs to decide on an open source license. This decision is of high economic relevance: Just which license is the best one to help the project grow and attract a community? The most common question is: Should the project choose a restrictive (reciprocal) license or a more permissive one? As an important step towards answering this question, this paper analyses actual license choice and correlated project growth from ten years of open source projects. It provides closed analytical models and finds that around 2001 a reversal in license choice occurred from restrictive towards permissive licenses.Comment: 14 pages, 6 figure

    The List is the Process: Reliable Pre-Integration Tracking of Commits on Mailing Lists

    Full text link
    A considerable corpus of research on software evolution focuses on mining changes in software repositories, but omits their pre-integration history. We present a novel method for tracking this otherwise invisible evolution of software changes on mailing lists by connecting all early revisions of changes to their final version in repositories. Since artefact modifications on mailing lists are communicated by updates to fragments (i.e., patches) only, identifying semantically similar changes is a non-trivial task that our approach solves in a language-independent way. We evaluate our method on high-profile open source software (OSS) projects like the Linux kernel, and validate its high accuracy using an elaborately created ground truth. Our approach can be used to quantify properties of OSS development processes, which is an essential requirement for using OSS in reliable or safety-critical industrial products, where certifiability and conformance to processes are crucial. The high accuracy of our technique allows, to the best of our knowledge, for the first time to quantitatively determine if an open development process effectively aligns with given formal process requirements

    Theory of quantum frequency conversion and type-II parametric down-conversion in the high-gain regime

    Full text link
    Frequency conversion (FC) and type-II parametric down-conversion (PDC) processes serve as basic building blocks for the implementation of quantum optical experiments: type-II PDC enables the efficient creation of quantum states such as photon-number states and Einstein-Podolsky-Rosen-states (EPR-states). FC gives rise to technologies enabling efficient atom-photon coupling, ultrafast pulse gates and enhanced detection schemes. However, despite their widespread deployment, their theoretical treatment remains challenging. Especially the multi-photon components in the high-gain regime as well as the explicit time-dependence of the involved Hamiltonians hamper an efficient theoretical description of these nonlinear optical processes. In this paper, we investigate these effects and put forward two models that enable a full description of FC and type-II PDC in the high-gain regime. We present a rigorous numerical model relying on the solution of coupled integro-differential equations that covers the complete dynamics of the process. As an alternative, we develop a simplified model that, at the expense of neglecting time-ordering effects, enables an analytical solution. While the simplified model approximates the correct solution with high fidelity in a broad parameter range, sufficient for many experimental situations, such as FC with low efficiency, entangled photon-pair generation and the heralding of single photons from type-II PDC, our investigations reveal that the rigorous model predicts a decreased performance for FC processes in quantum pulse gate applications and an enhanced EPR-state generation rate during type-II PDC, when EPR squeezing values above 12 dB are considered.Comment: 26 pages, 4 figure

    Approximate Approximation on a Quantum Annealer

    Full text link
    Many problems of industrial interest are NP-complete, and quickly exhaust resources of computational devices with increasing input sizes. Quantum annealers (QA) are physical devices that aim at this class of problems by exploiting quantum mechanical properties of nature. However, they compete with efficient heuristics and probabilistic or randomised algorithms on classical machines that allow for finding approximate solutions to large NP-complete problems. While first implementations of QA have become commercially available, their practical benefits are far from fully explored. To the best of our knowledge, approximation techniques have not yet received substantial attention. In this paper, we explore how problems' approximate versions of varying degree can be systematically constructed for quantum annealer programs, and how this influences result quality or the handling of larger problem instances on given set of qubits. We illustrate various approximation techniques on both, simulations and real QA hardware, on different seminal problems, and interpret the results to contribute towards a better understanding of the real-world power and limitations of current-state and future quantum computing.Comment: Proceedings of the 17th ACM International Conference on Computing Frontiers (CF 2020
    corecore