272 research outputs found

    Let the Children Listen: A First Approximation to the Sound Environment Assessment of Children through a Soundwalk Approach

    Get PDF
    [EN] The urban sound environment is one of the layers that characterizes a city, and several methodologies are used for its assessment, including the soundwalk approach. However, this approach has been tested mainly with adults. In the work presented here, the aim is to investigate a soundwalk methodology for children, analyzing the sound environment of five different sites of Gothenburg, Sweden, from children’s view-point, giving them the opportunity to take action as an active part of society. Both individual assessment of the sound environment and acoustic data were collected. The findings suggested that among significant results, children tended to rank the sound environment as slightly better when lower levels of background noise were present (LA90). Moreover, traffic dominance ratings appeared as the best predictor among the studied sound sources: when traffic dominated as a sound source, the children rated the sound environment as less good. Additionally, traffic volume appeared as a plausible predictor for sound environment quality judgments, since the higher the traffic volume, the lower the quality of the sound environment. The incorporation of children into urban sound environment research may be able to generate new results in terms of children’s understanding of their sound environment. Moreover, sound environment policies can be developed from and for children.SIPeople Programme (Marie Curie Actions) of the European Union 7th Framework Programme FP7/2007–2013 under REA Grant Agreement No. 290110, SONORUS Urban Sound Planne

    A model for investigating the influence of road surface texture and tyre tread pattern on rolling resistance

    Get PDF
    The reduction of rolling resistance is essential for a more environmentally friendly road transportation sector. Both tyre and road design can be utilised to reduce rolling resistance. In both cases a reliable simulation tool is needed which is able to quantify the influence of design parameters on the rolling resistance of a tyre rolling on a specific road surface. In this work a previously developed tyre/road interaction model is extended to account for different tread patterns and for losses due to small-scale tread deformation. Calculated contact forces and tyre vibrations for tyre/road interaction under steady-state rolling are used to predict rolling losses in the tyre. Rolling resistance is calculated for a series of different tyre/road combinations. Results are compared with rolling resistance measurements. The agreement between simulations and measurements is generally very good. It is found that both the tyre structure and small-scale tread deformations contribute to the rolling losses. The small-scale contribution depends mainly on the road roughness profile. The mean profile depth of the road surface is identified to correlate very well with the rolling resistance. Additional calculations are performed for non-traditional rubberised road surfaces, however, with mixed results. This possibly indicates the existence of additional loss mechanisms for these surfaces

    Model-based estimation of rail roughness from axle box acceleration

    Get PDF
    Monitoring rail roughness in the railway network allows directing grinding actions to where they are needed to reduce rolling noise and large wheel/rail forces. To be able to measure rail roughness on a large scale, indirect measurements onboard railway vehicles have to be carried out. Existing methods use either axle box acceleration (ABA) or under-coach noise measurements to monitor the rail roughness indirectly. The two main challenges with rail roughness estimation from vibroacoustic signals measured onboard vehicles are to separate wheel and rail roughness and to take into account varying track dynamics in the railway network. Both questions have not yet been addressed sufficiently. In this paper, an enhanced method for estimating rail roughness from ABA is presented. In contrast to all existing methods in the literature, the presented method operates in the time domain. A time-domain method has the advantage that the spatial variations of roughness become visible and paves the way for the detection of localized defects such as squats or deteriorated welds. The method is based on a previously developed time-domain model for high-frequency wheel/rail interaction and estimates the time series of the roughness from the time series of ABA. In a first step, the time series of the contact force is calculated from the axle box acceleration using a Least Mean Square algorithm for source identification. In a second step, the combined wheel/rail roughness is obtained from the contact force based on a non-linear Hertzian contact model and a convolutional approach to determine wheel and rail displacement. Separation of wheel and rail roughness is possible by cycle-averaging the contact force over a distance corresponding to the wheel perimeter and performing the second step separately for the part of the contact force originating from the wheel and the rail roughness, respectively. The method was tested for simulated ABA obtained from measured wheel and rail roughness. In the relevant wavelength range from 0.5 m to 5 mm, the rail roughness could be estimated with good accuracy for known track dynamics. Overall, deviations in 1/3-octave bands between estimated and actual roughness were below 1 dB. Only for low rail roughness, higher deviations of less than 2.6 dB occurred around the pinned-pinned resonance frequency. Uncertainties in the track parameters affect the roughness estimation, where the most critical parameter is the rail pad stiffness. A deviation of 20% in rail pad stiffness leads to deviations in the rail roughness of up to 3.5 dB in single 1/3-octave bands. The results illustrate the need to extend the method for the simultaneous extraction of track parameters and roughness from measured axle box acceleration

    A fast time-domain model for wheel/rail interaction demonstrated for the case of impact forces caused by wheel flats

    Get PDF
    The prediction of impact forces caused by wheel flats requires the application of time-domain models that are generally more computationally demanding than are frequency-domain models. In this paper, a fast time-domain model is presented to simulate the dynamic interaction between wheel and rail, taking into account the non-linear processes in the contact zone. Track and wheel are described as linear systems using impulse-response functions that can be precalculated. The contact zone is modelled by non-linear contact springs, allowing for loss of contact. This general model enables the calculation of the vertical contact forces generated by the small-scale roughness of rail and wheel, by parametric excitation on a discretely supported rail and by discrete irregularities of rail and wheel. Here, the model is applied to study the excitation caused by wheel flats by introducing a flat on a rotating wheel whose profile in the contact zone is updated in every time step. To demonstrate the functioning of the model, simulation results are compared to field measurements of impact forces and a brief parameter study is presented

    Numerische Simulation von Rollgeräusch und Rollwiderstand von LKW-Antriebsachsenreifen

    Get PDF
    Bei LKWs wird im Allgemeinen zwischen Lenk-, Antrieb- und Zusatzachsen unterschieden. Die eingesetzten Reifen sind dabei im Gegensatz zu PKWs für die spezifischen Bedingungen an der jeweiligen Achse z.B. hinsichtlich Traktion, Abrieb, Sicherheit oder Wirtschaftlichkeit optimiert. Speziell im Regionalverkehr werden dabei aufgrund häufiger Beschleunigungs-/Bremsvorgänge und Kurvenfahrten an den Antriebsachsen Reifen mit ausgeprägtem Blockprofil verwendet. Die resultierende starke Schwingungsanregung führt selbst auf eigentlich geräuscharmen Straßenoberflächen unmittelbar zu einer erhöhten Geräuschemission. Aus diesem Grund ist die Entwicklung eines geräuscharmen Antriebsachsenreifens für den LKW-Regionalverkehr eines der Ziele des Verbundsprojektes "Leiser Stranßenverkehr 3" (LeiStra3). Zur Unterstützung dieses Vorhabens wurde ein existierendes numerisches Modell zur Berechnung von Reifen-/Fahrbahninteraktion, Rollgeräusch und Rollwiderstand für PKW-Reifen an die speziellen Erfordernisse der Simulation von LKW-Antriebsachsenreifen angepasst. Besonderer Augenmerk wurde dabei auf eine effiziente Abbildung des Querprofils und der resultierenden Reifenanregung gelegt. Neben der Geräuschemission wird als eine wichtige Kenngröße der Wirtschaftlichkeit auch der Rollwiderstand betrachtet um einen möglichen Zielkonflikt frühzeitig zu erkennen

    Importance of tread inertia and damping on the tyre/road contact stiffness

    Get PDF
    Predicting tyre/road interaction processes like roughness excitation, stick-slip, stick-snap, wear and traction requires detailed information about the road surface, the tyre dynamics and the local deformation of the tread at the interface. Aspects of inertia and damping when the tread is locally deformed are often neglected in many existing tyre/road interaction models. The objective of this paper is to study how the dynamic features of the tread affect contact forces and contact stiffness during local deformation. This is done by simulating the detailed contact between an elastic layer and a rough road surface using a previously developed numerical time domain contact model. Road roughness on length scales smaller than the discretisation scale is included by the addition of nonlinear contact springs between each pair of contact elements. The dynamic case, with an elastic layer impulse response extending in time, is compared with the case where the corresponding quasi-static response is used. Results highlight the difficulty of estimating a constant contact stiffness as it increases during the indentation process between the elastic layer and the rough road surface. The stiffness-indentation relation additionally depends on how rapidly the contact develops; a faster process gives a stiffer contact. Material properties like loss factor and density also alter the contact development. This work implies that dynamic properties of the local tread deformation may be of importance when simulating contact details during normal tyre/road interaction conditions. There are however indications that the significant effect of damping could approximately be included as an increased stiffness in a quasi-static tread model

    The application of dither to mitigate curve squeal

    Get PDF
    Curve squeal is a highly disturbing tonal sound generated by rail vehicles like trains, metros or trams, when negotiating a sharp curve. The probability that squeal occurs increases with reduced curve radius of the track. Curve squeal noise is attributed to self-excited vibrations caused by stick/slip behaviour due to lateral creepage of the wheel tyre on the top of the rail. With respect to the large number of rolling stock units and the long lifetime of vehicles, there is an urgent need for a cheap and simple retrofitting measure to reduce curve squeal. Therefore, main objective of this paper is to investigate the potential to reduce curve squeal by means of active control in the form of dither in an efficient and robust way. Dither control has been applied in the field of mechanical engineering for systems including non-linear components. There it has been shown to suppress self-excited oscillations very efficiently. The control is an open-loop control. It consists in adding a forced vibration to the vibrational system. A time-domain model has been applied to investigate the mechanisms behind self-excited vibrations leading to curve squeal at the squealing noise rig at Chalmers University of Technology. The analysis showed, that in the presence of constant friction, the coupling between lateral and vertical direction is the driving mechanism for building up self-excited vibrations. Based on this insight, the potential of dither has been investigated. For the case considered here dither has the potential to reduce the overall kinetic energy on the wheel by more than 10 dB and on the rail by more than 20 dB. Further optimisation of dither forces with respect to the radiated sound power might increase this potential

    The low-noise potential of low-vibration track

    Get PDF
    High-speed railway lines worldwide are increasingly built using slab-track technology, in which a reinforced concrete slab replaces the supporting function of traditional ballast and sleepers. The increased use, no longer limited to tunnels and bridges, is partly due to their lower maintenance, compact construction, and potential for effective isolation against ground-borne vibrations. However, rolling noise on slab tracks typically shows higher levels of noise radiation compared to ballasted tracks. There is an apparent conflict between ground-borne vibration and noise: The stiffness of the rail support determines if the vibrational energy is transmitted into the ground, exciting ground-borne vibrations, or stays in the rail, leading to higher noise radiation. In this work, a slab track construction type called low-vibration track is adapted such that both low vibrations and low noise radiation can be achieved without compromising. This is made possible by tuning the inertia of this system\u27s booted sleeper and its surrounding elasticity to provide a low support stiffness at low frequencies and a high stiffness in the range where the rail has a high radiation efficiency. It is found that the track decay rate, an indicator for the radiated noise from the rail, can be increased significantly above 300 Hz

    A time-domain model for railway rolling noise

    Get PDF
    The poster presents a modelling approach for railway rolling noise prediction developed at Chalmers during a recent PhD project. Rolling noise, which is caused by the roughness-excited vibration of the wheel and the track, is the dominant noise source in a wide range of vehicle speeds. The presented modelling approach is based on the time-domain, non-linear contact model WERAN. The model has been extended with a numerically efficient description of the structural vibration of the wheel and the track based on moving Green\u27s functions. Further, efficient models for the sound radiation from the wheel and track were developed and implemented, again using a Green\u27s functions approach. The Green\u27s functions are computed using combinations of the Waveguide Finite Element method (2.5D FE), the Wavenumber domain Boundary Element Method (WBEM / 2.5D BE), the Fourier domain BEM (FBEM), and spherical harmonics equivalent sources. This model provides a physics-based, time-domain description of the radiated sound based on the combined roughness between the wheel and the rail. There are several possible applications for a time-domain rolling noise model, for example in component design, condition monitoring, and, by auralising the noise, as an effective tool for communication with a broader public
    • …
    corecore