21 research outputs found

    Cross-competition of CD8+ T cells shapes the immunodominance hierarchy during boost vaccination

    Get PDF
    CD8+ T cell responses directed against multiple pathogen-derived epitopes are characterized by defined immunodominance hierarchy patterns. A possible explanation for this phenomenon is that CD8+ T cells of different specificities compete for access to epitopes on antigen-presenting cells, and that the outcome of this so-called cross-competition reflects the number of induced T cells. In our study using a vaccinia virus infection model, we found that T cell cross-competition is highly relevant during boost vaccination, thereby shaping the immunodominance hierarchy in the recall. We demonstrate that competition was of no importance during priming and was unaffected by the applied route of immunization. It strongly depended on the timing of viral antigen expression in infected APCs, and it was characterized by poor proliferation of T cells recognizing epitopes derived from late viral proteins. To our knowledge, this is the first demonstration of the functional importance of T cell cross-competition during a viral infection. Our findings provide a basis for novel strategies for how boost vaccination to defined antigens can be selectively improved. They give important new insights into the design of more efficient poxviral vectors for immunotherapy

    Lymph-Node Resident CD8 alpha(+) Dendritic Cells Capture Antigens from Migratory Malaria Sporozoites and Induce CD8(+) T Cell Responses

    Get PDF
    Malaria infection begins when a female Anopheles mosquito injects Plasmodium sporozoites into the skin of its host during blood feeding. Skin-deposited sporozoites may enter the bloodstream and infect the liver, reside and develop in the skin, or migrate to the draining lymph nodes (DLNs). Importantly, the DLN is where protective CD8+ T cell responses against malaria liver stages are induced after a dermal route of infection. However, the significance of parasites in the skin and DLN to CD8+ T cell activation is largely unknown. In this study, we used genetically modified parasites, as well as antibody-mediated immobilization of sporozoites, to determine that active sporozoite migration to the DLNs is required for robust CD8+ T cell responses. Through dynamic in vivo and static imaging, we show the direct uptake of parasites by lymph-node resident DCs followed by CD8+ T cell-DC cluster formation, a surrogate for antigen presentation, in the DLNs. A few hours after sporozoite arrival to the DLNs, CD8+ T cells are primed by resident CD8α+ DCs with no apparent role for skin-derived DCs. Together, these results establish a critical role for lymph node resident CD8α+ DCs in CD8+ T cell priming to sporozoite antigens while emphasizing a requirement for motile sporozoites in the induction of CD8+ T cell-mediated immunity

    Immunization of mice with the nef gene from Human Immunodeficiency Virus type 1: Study of immunological memory and long-term toxicology

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The human immunodeficiency virus type 1 (HIV-1) regulatory protein, Nef, is an attractive vaccine target because it is involved in viral pathogenesis, is expressed early in the viral life cycle and harbors many T and B cell epitopes. Several clinical trials include gene-based vaccines encoding this protein. However, Nef has been shown to transform certain cell types <it>in vitro</it>. Based on these findings we performed a long-term toxicity and immunogenicity study of Nef, encoded either by Modified Vaccinia virus Ankara or by plasmid DNA. BALB/c mice were primed twice with either DNA or MVA encoding Nef and received a homologous or heterologous boost ten months later. In the meantime, the Nef-specific immune responses were monitored and at the time of sacrifice an extensive toxicological evaluation was performed, where presence of tumors and other pathological changes were assessed.</p> <p>Results</p> <p>The toxicological evaluation showed that immunization with MVAnef is safe and does not cause cellular transformation or other toxicity in somatic organs.</p> <p>Both DNAnef and MVAnef immunized animals developed potent Nef-specific cellular responses that declined to undetectable levels over time, and could readily be boosted after almost one year. This is of particular interest since it shows that plasmid DNA vaccine can also be used as a potent late booster of primed immune responses. We observed qualitative differences between the T cell responses induced by the two different vectors: DNA-encoded nef induced long-lasting CD8<sup>+ </sup>T cell memory responses, whereas MVA-encoded nef induced CD4<sup>+ </sup>T cell memory responses. In terms of the humoral immune responses, we show that two injections of MVAnef induce significant anti-Nef titers, while repeated injections of DNAnef do not. A single boost with MVAnef could enhance the antibody response following DNAnef prime to the same level as that observed in animals immunized repeatedly with MVAnef. We also demonstrate the possibility to boost HIV-1 Nef-specific immune responses using the MVAnef construct despite the presence of potent anti-vector immunity.</p> <p>Conclusion</p> <p>This study shows that the nef gene vectored by MVA does not induce malignancies or other adverse effects in mice. Further, we show that when the nef gene is delivered by plasmid or by a viral vector, it elicits potent and long-lasting immune responses and that these responses can be directed towards a CD4<sup>+ </sup>or a CD8<sup>+ </sup>T cell response depending on the choice of vector.</p

    The EBV Immunoevasins vIL-10 and BNLF2a Protect Newly Infected B Cells from Immune Recognition and Elimination

    Get PDF
    Lifelong persistence of Epstein-Barr virus (EBV) in infected hosts is mainly owed to the virus' pronounced abilities to evade immune responses of its human host. Active immune evasion mechanisms reduce the immunogenicity of infected cells and are known to be of major importance during lytic infection. The EBV genes BCRF1 and BNLF2a encode the viral homologue of IL-10 (vIL-10) and an inhibitor of the transporter associated with antigen processing (TAP), respectively. Both are known immunoevasins in EBV's lytic phase. Here we describe that BCRF1 and BNLF2a are functionally expressed instantly upon infection of primary B cells. Using EBV mutants deficient in BCRF1 and BNLF2a, we show that both factors contribute to evading EBV-specific immune responses during the earliest phase of infection. vIL-10 impairs NK cell mediated killing of infected B cells, interferes with CD4+ T-cell activity, and modulates cytokine responses, while BNLF2a reduces antigen presentation and recognition of newly infected cells by EBV-specific CD8+ T cells. Together, both factors significantly diminish the immunogenicity of EBV-infected cells during the initial, pre-latent phase of infection and may improve the establishment of a latent EBV infection in vivo

    Induction of Noxa-Mediated Apoptosis by Modified Vaccinia Virus Ankara Depends on Viral Recognition by Cytosolic Helicases, Leading to IRF-3/IFN-β-Dependent Induction of Pro-Apoptotic Noxa

    Get PDF
    Viral infection is a stimulus for apoptosis, and in order to sustain viral replication many viruses are known to carry genes encoding apoptosis inhibitors. F1L, encoded by the orthopoxvirus modified vaccinia virus Ankara (MVA) has a Bcl-2-like structure. An MVA mutant lacking F1L (MVAΔF1L) induces apoptosis, indicating that MVA infection activates and F1L functions to inhibit the apoptotic pathway. In this study we investigated the events leading to apoptosis upon infection by MVAΔF1L. Apoptosis largely proceeded through the pro-apoptotic Bcl-2 family protein Bak with some contribution from Bax. Of the family of pro-apoptotic BH3-only proteins, only the loss of Noxa provided substantial protection, while the loss of Bim had a minor effect. In mice, MVA preferentially infected macrophages and DCs in vivo. In both cell types wt MVA induced apoptosis albeit more weakly than MVAΔF1L. The loss of Noxa had a significant protective effect in macrophages, DC and primary lymphocytes, and the combined loss of Bim and Noxa provided strong protection. Noxa protein was induced during infection, and the induction of Noxa protein and apoptosis induction required transcription factor IRF3 and type I interferon signalling. We further observed that helicases RIG-I and MDA5 and their signalling adapter MAVS contribute to Noxa induction and apoptosis in response to MVA infection. RNA isolated from MVA-infected cells induced Noxa expression and apoptosis when transfected in the absence of viral infection. We thus here describe a pathway leading from the detection of viral RNA during MVA infection by the cytosolic helicase-pathway, to the up-regulation of Noxa and apoptosis via IRF3 and type I IFN signalling

    Modified Vaccinia Virus Ankara Triggers Chemotaxis of Monocytes and Early Respiratory Immigration of Leukocytes by Induction of CCL2 Expressionâ–¿

    No full text
    Orthopoxviruses commonly enter into humans and animals via the respiratory tract. Herein, we show that immigration of leukocytes into the lung is triggered via intranasal infection of mice with modified vaccinia virus Ankara (MVA) and not with the vaccinia virus (VACV) Elstree, Wyeth, or Western Reserve (WR) strain. Immigrating cells were identified as monocytes, neutrophils, and CD4+ lymphocytes by flow cytometry and could be detected 24 h and 48 h postinfection. Using an in vitro chemotaxis assay, we confirmed that infection with MVA induces the expression of a soluble chemotactic factor for monocytes, identified as CCL2 (monocyte chemotactic protein-1 [MCP-1]). In contrast to infection with several other VACV strains, MVA induced the expression of CCL2, CCL3, CCL4, and CXCL10 in the human monocytic cell line THP-1 as well as in primary human monocytes. Thus, MVA, and not the VACV Elstree, Wyeth, or WR strain, consistently triggered the expression of a panel of chemokines, including CCL2, in the murine lung, correlating considerably with the immigration of leukocytes. Using CCL2-deficient mice, we demonstrate that CCL2 plays a key role in MVA-triggered respiratory immigration of leukocytes. Moreover, UV irradiation of MVA prevented CCL2 expression in vitro and in vivo as well as respiratory immigration of leukocytes, demonstrating the requirement for an activated molecular viral life cycle. We propose that MVA-triggered chemokine expression causes early immigration of leukocytes to the site of infection, a feature that is important for rapid immunization and its safety and efficiency as a viral vector
    corecore