13 research outputs found

    HLA-DR alpha 2 domain interacts with TIRC7 protein.

    No full text
    <p>A. Strain AH109 carrying GAL4 activation domain, fused to cDNA containing HLA-DR, was tested for interaction with indicated domains of TIRC7 (N-terminus aa 1-173, large extracellular domain aa 438-512 or C-terminus aa 586-614) as bait. The growth of combined clones on Histidine-negative agar plates indicate a specific interaction between the HLA-DR alpha 2 and TIRC7 extracellular domain whereas no interaction between HLA-DR alpha 2 to the C – terminal or N- terminal domain of TIRC7 was observed. The growth of colonies on Histidine positive agar plates which represents a positive control, is shown in the left panel. B. Lysates were prepared from 1 h allo-activated PBL and Jurkat cells. Lysates were immunoprecipitated (IP) with anti-TIRC7 mAb and immunoblotted (IB) with specific antibody against HLA-DR protein or TIRC7 in denaturing conditions. Co-precipitation of TIRC7 and HLA-DR is observed in PBL whereas only TIRC7 was precipitated in HLA-DR negative Jurkat cells. C. COS7 cells were transiently transfected with a TIRC7-<i>myc</i> fusion protein vector construct, incubated with sHLA-DRα2 and stained with secondary anti-human Fc protein-Cy3 conjugated mAb. Flow cytometry analysis revealed that sHLA-DRα2 solely binds to TIRC7 transfected COS7 cells and fail to bind to non-transfected COS7 control cells. Shown is one experiment out of four. D. COS7 cells transfected with TIRC7-<i>myc</i> fusion protein showed concentration-dependent binding of sHLA-DRα2 (0, 25, 50, 150 µg/ml) using direct immunofluorescence method. No binding of control protein was observed in transfected COS7 cells. Shown is one experiment out of three. E and F. TIRC7 deficient and wild-type mouse splenocytes were isolated and either stimulated with PHA for 48 h or remained unstimulated. Cells were incubated with either human HLA-DR alpha 2 or human control protein prior to flow cytometry (E) or confocal microscopic analysis (F) using anti-human Fc-specific Cy3 as secondary antibody. The results show that HLA-DR alpha 2 solely binds to stimulated WT cells in flow cytometric and microscopic analyses. Shown is one experiment out of three, respectively.</p

    Scheme of proposed model of regulation of immune activation via TIRC7-HLA-DR alpha 2 binding.

    No full text
    <p>TIRC7 serves as ligand for HLA-DR alpha 2 upon TCR activation in the early phase of immune activation. After positive signals were received and immune cells are activated, TIRC7 is expressed on the cell surface (A) and its binding to HLA-DR alpha 2 transduces negative signals to lymphocytes (B).</p

    TIRC7 signals triggering prevents T cell - APC interaction reflected in inhibition of several cytokines.

    No full text
    <p>A. Human PBL were isolated using standard Ficoll gradient centrifugation protocol and culture 14 days to induce monocyte differentiation. Either sHLA-DRα2 (50 µg/ml) or control (50 µg/ml) were co-incubated and subjected to cytokine release assays. Cytokine levels were measured by quantitative real time PCR which revealed a profound inhibition of MCP-1, IL-12, IFN-γ, TNF-α and Rantes expression compared with the control. B. Human sHLA-DRα2 showed specific cross-reactivity on balb/c mice splenocytes (left side). For the in vivo functional analysis balb/c splenocytes were isolated and further subjected to microscopic analysis for cross-reactivity of human sHLA-DRα2 to mouse TIRC7 which resulted in significant binding on activated splenocytes. C. In balb/c mice (n = 14) LPS was administered followed by a single dose (100 µg/mice, i.p.) of human sHLA-DRα2 (200 µg/day, i.p.). Human sHLA-DRα2 resulted in a significant down-regulation of IFN-γ, TNF-α and Rantes after 24 h treatment. sHLA-DRα2 or control protein treated splenocytes were subjected to immunobloting using mAb against caspase 7. Activation of caspase 7 is indicated by the appearance of cleaved fragments with a size of 20 kDa in sHLA-DRα2 treated animals (a1 and a2) whereas no activation of caspase 7 was observed in controls. Shown are two examples out of five.</p

    sHLA-DR α2 binds to TIRC7 expressed in CD4 and CD8 T cells.

    No full text
    <p>CD4+ and CD8+ T cells were separated by magnetic beads, stimulated with anti-CD3/CD28 mAb for 48 h, and incubated with either sHLA-DR α2 or control protein for 30 min prior to confocal microscopic analysis. Using anti-human Fc-Cy3 mAb as secondary antibody, binding of sHLA-DRα2 or control protein to TIRC7 protein was analyzed. The results show a binding in CD4+ and CD8+ human T cells co-incubated with sHLA-DRα2 (upper panel) whereas no binding was observed in various control experiments using either control protein (lower panel) or anti-Fc-Cy3 conjugated secondary mAb only. Shown is one experiment out of three.</p

    Targeting of TIRC7 in lymphocytes induces apoptosis via the mitochondrial intrinsic pathway.

    No full text
    <p>A. PBL were co-incubated 50 µg/ml sHLA-DRα2 or control protein for 5 h, and immunobloting using mAb against caspase 9, caspase 8, caspase 7 and caspase 3 was performed. Activation of caspase 9 and caspase 7 is indicated by the appearance of cleaved fragments with a size of 37 and 20 kDa, respectively. No activation of caspase 8 and 3 was observed. B. Human PBL were isolated, activated with anti-CD3/CD28 antibodies (a) cultured in the presence of 50 µg/ml sHLA-DRα2 (d), and subjected to flow cytometric analysis. In comparison to non-treated controls (b,c) stimulated human T cells incubated with 50 µg/ml sHLA-DRα2 (d) demonstrated a remarkably reduced expression of FasL as detected by FITC labeled anti-FasL mAb. C. Human PBL were recall antigen stimulated for 6 days and incubated with FITC labeled anti-TIRC7 mAb. A monocyte cell line, THP-1, was incubated with anti-HLA-DR mAb and secondary stained with Cy3-conjugate. To increase cell interaction, PBL and THP-1 cells were mixed and incubated at 37°C for 20 min and subjected to confocal microscopic analysis. The data show that HLA-DR (red color) and TIRC7 (green color) co-localize (merge, yellow color) at the physical site of T cell/APC interaction. Shown is one experiment out of three.</p

    Soluble HLA-DR alpha 2 domain inhibits IFN-γ cytokine expression and phosphorylation of STAT4, but not STAT6.

    No full text
    <p>A. Human PBL were activated with PHA for 48 h and co-cultured with either sHLA-DRα2 or control protein. Supernatants were subjected to quantitative sandwich ELISA. sHLA-DRα2 at a concentration of 50 µg/ml significantly inhibited the IFN-γ expression of stimulated PBL, whereas control protein exhibited no significant effect. B. No inhibition of IL-10 expression was observed. The results shown represent the means of five independent experiments, respectively. C. Human PBL were allo-activated for 4 h in the presence of anti-TIRC7 mAb and subjected to Western blot analysis. Equal volume of cells were fractionated by SDS-PAGE, and the phosphorylation status of STAT4 and STAT6 was determined by Western blot analysis. STAT4 phosphorylation was decreased in the presence of sHLA-DRα2 whereas pSTAT6 remained unchanged. No changes were observed using STAT4, and anti-Tubulin mAb. Shown is one representative experiment out of three independent experiments. D. Human PBL were isolated using standard Ficoll gradient centrifugation protocol. Cells were activated with PHA, anti-CD3/CD28 mAb, and MLR, respectively, and co-cultured with either sHLA-DRα2 or control protein in varying concentrations (50, 100, and 150 µg/ml). Cells were subjected to CFSE proliferation assays. A significant inhibition of proliferation was observed using sHLA-DRα2 in all proliferation assays whereas the control protein did not show any inhibition. The results shown represent the means of four independent experiments, respectively. E. The inhibition of proliferation of 48 h anti-CD3/CD28 stimulated human PBL by sHLA-DRα2 (100 µg/ml) was prevented by co-incubation of the anti-TIRC7 mAb 136 (100 µg/ml). F. Cell lysates were prepared from 1 h allo-activated PBL and immunoprecipitated (IP) with anti-TIRC7 mAb and subjected to western blot analysis. The immunoblot (IB) with anti-TIRC7 and anti-SHP-1 mAb showed the co-precipitation of SHP-1 and TIRC7. G. The phosphorylation of TCR-ζ chain and ZAP70 induced by IL-2 is inhibited by sHLA-DRα2. Human PBL were isolated and activated using anti-CD3/CD28 mAb for 18 h in the presence and absence of sHLA-DRα2. In the presence of sHLA-DRα2 (50 µg/ml) the phosphorylation of TCR-ζ chain and ZAP70 in stimulated cells (right lane) was reduced to a level similar to that of non-stimulated cells (left lane) while in stimulated cells without sHLA-DRα2 (middle lane) substantial phosphorylation of both proteins was observed.</p

    Localization of R281 in a protein model of the myosin heavy chain.

    No full text
    <p>A, Positions of amino acids affected in NVM, HCM and DCM. The mutations were plotted on a model of chicken skeletal myosin subfragment-1 (PDB code 2MYS). Functional sites are indicated by arrows. 68 selected mutations causing HCM are indicated by yellow spheres and 4 mutations causing DCM by green spheres. The mutations were selected from the UniProt database (UniProtKB) and from two publications<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0001362#pone.0001362-Woo1" target="_blank">[33]</a>, <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0001362#pone.0001362-Villard1" target="_blank">[34]</a>. The described NVM causing mutation is highlighted as a blue sphere and labeled according to the position in MYH7_HUMAN. B, Close-up view of the salt bridge between residues R281 and D325 in chicken skeletal myosin subfragment-1 (PDB code 2MYS). The amino acids are numbered according to MYH7_HUMAN. The sulfate molecule (yellow and orange) marks the ATPase active site for better orientation. The residues R281 and D325 are shown according to the CPK color scheme (grey, carbon atoms; red, oxygen atoms, i.e. acidic side chain; light blue, nitrogen atoms, i.e. basic side chain). The salt bridge between R281 and D325 is symbolized by dashed black lines that indicate potential hydrogen bonds. The helix attached to D325 is highlighted in red.</p

    Genetic analysis.

    No full text
    <p>A, Linkage analysis. Two-point LOD scores for all chromosomes under the assumption of a reduced penetrance of 90% are shown. In the line below the diagram each red slash indicates the position of an analyzed marker on the corresponding chromosome. B, Genetic map of the candidate region 14cen-14q12. A part of the deCODE map is shown in the upper part. The critical interval is delimited by 14ptel and <i>D14S264</i>. The genomic organization of <i>MYH7</i> is delineated in the lower part. Exons are indicated by filled boxes and introns by horizontal lines. The translational start codon is located in exon 3. The positions of the intragenic markers <i>MYO</i> I in intron 1and <i>MYOII</i> in intron 24 are shown. The mutation was identified in exon 10. C, Mutation analysis. Chromatograms of the index patient III:4 and her unaffected son IV:2 are shown. The mutation site is marked by an arrow. Parts of the nucleotide sequence (from c.835 to c.849) and protein sequence (from 279 to 283) are given below.</p

    Imaging of NVM in patient III:8 of family DU-11.

    No full text
    <p>A, Magnetic resonance image: long-axis plane in diastole. Prominent myocardial trabeculations and deep intertrabecular recesses are seen in the apical half of the right and left ventricle as indicated by arrows. B, Magnetic resonance image: short-axis plane in diastole. In the apex region the cavum and the myocardial wall can not clearly be distinguished. Extensive trabeculations in this region produce a sponge-like appearance of the myocardium. C, Two-dimensional echocardiograph: apical four-chamber view in diastole with (right) and without (left) color flow imaging. A massive apical thickening is seen without any evidence of trabeculations in the left image. In contrast, color flow imaging (right image) shows more clearly the recesses extending deeply into the myocardial wall. D, Two-dimensional echocardiograph: parasternal short-axis view in diastole with (right) and without (left) color flow imaging. The left image shows a mesh-like morphology in the mid-region of the left ventricle. The cavum is not clearly discernable. The right image demonstrates numerous small blood-flow eddies within the sponge-like myocardium (as shown by color flow imaging). LV, left ventricle; RV, right ventricle; LA, left atrium; RA, right atrium.</p

    Multiple alignment of different myosin molecules.

    No full text
    <p>The interacting sites R281 and D325 (both in bold, position numbering according to MYH7_HUMAN) are highly conserved between myosin molecules of human, fruit fly, zebrafish and <i>Caenorhabditis elegans</i>, respectively (*, identical position; :, conservative exchange). Sequence names correspond to SwissProt entry names: MYH7_HUMAN-human myosin heavy chain, cardiac muscle beta isoform; MYH1_HUMAN-human myosin heavy chain, skeletal muscle, adult 1; MYH4_HUMAN-human myosin heavy chain, skeletal muscle, fetal; MYH1_MOUSE-murine myosin heavy chain, skeletal muscle, adult 1; MYH4_RABIT-rabbit myosin heavy chain, skeletal muscle, juvenile; MYSS_CHICK-chicken myosin heavy chain, skeletal muscle, adult; Q802Z4_BRARE (Q802_BRARE)-zebrafish protein Q802Z4; MYSA_DROME-fruit fly myosin heavy chain, muscle; MYO3_CAEEL-<i>Caenorhabditis elegans</i> myosin heavy chain A.</p
    corecore