162 research outputs found

    Calibration of the Distance Scale from Cepheids

    Get PDF
    We have used the infrared surface brightness technique to obtain a new absolute calibration of the Cepheid PL relation in optical and near-infrared bands from improved data on Galactic stars. The infrared surface brightness distances to the Galactic variables are consistent with direct interferometric Cepheid distance measurements, and with the PL calibration coming from Hipparcos parallaxes of nearby Cepheids, but are more accurate than these determinations. We find that in all bands, the Galactic Cepheid PL relation appears to be slightly, but significantly steeper than the corresponding relation defined by the LMC Cepheids. Since the slope of our LMC Cepheid sample is clearly better defined than the one of the much smaller Galactic sample, we fit the LMC slopes to our Galactic calibrating Cepheid sample (which introduces only a small uncertainty) to obtain our final, adopted and improved absolute calibrations of the Cepheid PL relations in the VIWJHK bands. Comparing the absolute magnitudes of 10-day period Cepheids in both galaxies which are only slightly affected by the different Galactic and LMC slopes of the PL relation, we derive values for the LMC distance modulus in all these bands which can be made to agree extremely well under reasonable assumptions for both, the reddening law, and the adopted reddenings of the LMC Cepheids. This yields, as our current best estimate from Cepheid variables, a LMC distance modulus of 18.55 +- 0.06.Comment: to be published in: "Stellar Candles", Lecture Notes in Physics (http://link.springer.de/series/lnpp

    Very accurate Distances and Radii of Open Cluster Cepheids from a Near-Infrared Surface Brightness Technique

    Full text link
    We have obtained the radii and distances of 16 galactic Cepheids supposed to be members in open clusters or associations using the new optical and near-infrared calibrations of the surface brightness (Barnes-Evans) method given by Fouque & Gieren (1997). We discuss in detail possible systematic errors in our infrared solutions and conclude that the typical total uncertainty of the infrared distance and radius of a Cepheid is about 3 percent in both infrared solutions, provided that the data are of excellent quality and that the amplitude of the color curve used in the solution is larger than ~0.3 mag. We compare the adopted infrared distances of the Cepheid variables to the ZAMS-fitting distances of their supposed host clusters and associations and find an unweighted mean value of the distance ratio of 1.02 +- 0.04. A detailed discussion of the individual Cepheids shows that the uncertainty of the ZAMS-fitting distances varies considerably from cluster to cluster. We find clear evidence that four Cepheids are not cluster members (SZ Tau, T Mon, U Car and SV Vul) while we confirm cluster membership for V Cen and BB Sgr for which the former evidence for cluster membership was only weak. After rejection of non-members, we find a weighted mean distance ratio of 0.969 +- 0.014, with a standard deviation of 0.05, which demonstrates that both distance indicators are accurate to better than 5%, including systematic errors, and that there is excellent agreement between both distance scales.Comment: LaTeX, 11 Figures, 5 Tables, to be published in The Astrophysical Journal, Oct. 10, 1997 issu

    The Araucaria Project. The Distance to the Small Magellanic Cloud from Near-Infrared Photometry of RR Lyrae Variables

    Full text link
    We have obtained deep infrared J and K band observations of nine 4.9x4.9 arcmin fields in the Small Magellanic Cloud (SMC) with the ESO New Technology Telescope equipped with the SOFI infrared camera. In these fields, 34 RR Lyrae stars catalogued by the OGLE collaboration were identified. Using different theoretical and empirical calibrations of the infrared period-luminosity-metallicity relation, we find consistent SMC distance moduli, and find a best true distance modulus to the SMC of 18.97 +/- 0.03 (statistical) +/- 0.12 (systematic) mag which agrees well with most independent distance determinations to this galaxy, and puts the SMC 0.39 mag more distant than the LMC for which our group has recently derived, from the same technique, a distance of 18.58 mag.Comment: AJ submitted and accepte

    The Araucaria Project: The effect of blending on the Cepheid distance to NGC 300 from Advanced Camera for Surveys images

    Full text link
    We have used the Advanced Camera for Surveys aboard the Hubble Space Telescope to obtain F435W, F555W and F814W single-epoch images of six fields in the spiral galaxy NGC 300. Taking advantage of the superb spatial resolution of these images, we have tested the effect that blending of the Cepheid variables studied from the ground with close stellar neighbors, unresolved on the ground-based images, has on the distance determination to NGC 300. Out of the 16 Cepheids included in this study, only three are significantly affected by nearby stellar objects. After correcting the ground-based magnitudes for the contribution by these projected companions to the observed flux, we find that the corresponding Period-Luminosity relations in V, I and the Wesenheit magnitude W_I are not significantly different from the relations obtained without corrections. We fix an upper limit of 0.04 magnitudes to the systematic effect of blending on the distance modulus to NGC 300. As part of our HST imaging program, we present improved photometry for 40 blue supergiants in NGC 300.Comment: To be published in the Astrophysical Journa

    The Araucaria Project. Near-Infrared Photometry of Cepheid Variables in the Sculptor Galaxy NGC 55

    Full text link
    We have obtained deep images in the near-infrared J and K filters of four fields in the Sculptor Group spiral galaxy NGC 55 with the ESO VLT and ISAAC camera. For 40 long-period Cepheid variables in these fields which were recently discovered by Pietrzy{\'n}ski et al., we have determined mean J and K magnitudes from observations at two epochs, and derived distance moduli from the observed PL relations in these bands. Using these values together with the previously measured distance moduli in the optical V and I bands, we have determined a total mean reddening of the NGC 55 Cepheids of E(B-V)=0.127 ±\pm 0.019 mag, which is mostly produced inside NGC 55 itself. For the true distance modulus of the galaxy, our multiwavelength analysis yields a value of 26.434 ±\pm 0.037 mag (random error), corresponding to a distance of 1.94 ±\pm 0.03 Mpc. This value is tied to an adopted true LMC distance modulus of 18.50 mag. The systematic uncertainty of our derived Cepheid distance to NGC 55 (apart from the uncertainty on the adopted LMC distance) is ±\pm4%, with the main contribution likely to come from the effect of blending of some of the Cepheids with unresolved companion stars. The distance of NGC 55 derived from our multiwavelength Cepheid analysis agrees within the errors with the distance of NGC 300, strengthening the case for a physical association of these two Sculptor Group galaxies.Comment: latex. ApJ accepte

    The Impact of Contaminated RR Lyrae/Globular Cluster Photometry on the Distance Scale

    Full text link
    RR Lyrae variables and the stellar constituents of globular clusters are employed to establish the cosmic distance scale and age of the universe. However, photometry for RR Lyrae variables in the globular clusters M3, M15, M54, M92, NGC2419, and NGC6441 exhibit a dependence on the clustercentric distance. For example, variables and stars positioned near the crowded high-surface brightness cores of the clusters may suffer from photometric contamination, which invariably affects a suite of inferred parameters (e.g., distance, color excess, absolute magnitude, etc.). The impetus for this study is to mitigate the propagation of systematic uncertainties by increasing awareness of the pernicious impact of contaminated and radial-dependent photometry.Comment: To appear in ApJ

    Evidence for a Universal Slope of the Period-Luminosity Relation from Direct Distances to Cepheids in the LMC

    Full text link
    We have applied the infrared surface brightness (ISB) technique to derive distances to 13 Cepheid variables in the LMC which have periods from 3-42 days. The corresponding absolute magnitudes define PL relations in VIWJK bands which agree exceedingly well with the corresponding Milky Way relations obtained from the same technique, and are in significant disagreement with the observed LMC Cepheid PL relations, by OGLE-II and Persson et al., in these bands. Our data uncover a systematic error in the p-factor law which transforms Cepheid radial velocities into pulsational velocities. We correct the p-factor law by requiring that all LMC Cepheids share the same distance. Re-calculating all Milky Way and LMC Cepheid distances with the revised p-factor law, we find that the PL relations from the ISB technique both in LMC and in the Milky Way agree with the OGLE-II and Persson et al. LMC PL relations, supporting the conclusion of no metallicity effect on the slope of the Cepheid PL relation in optical/near infrared bands.Comment: 4 pages, to appear in the proceedings of the "Stellar Pulsation and Evolution" conference, Monte Porzio Catone, June 200
    • 

    corecore