9,095 research outputs found

    The primary steps of photosynthesis in bacteriorhodopsin

    Get PDF

    Gravitating semirelativistic N-boson systems

    Full text link
    Analytic energy bounds for N-boson systems governed by semirelativistic Hamiltonians of the form H=\sum_{i=1}^N(p_i^2 + m^2)^{1/2} - sum_{1=i<j}^N v/r_{ij}, with v>0, are derived by use of Jacobi relative coordinates. For gravity v=c/N, these bounds are substantially tighter than earlier bounds and they are shown to coincide with known results in the nonrelativistic limit.Comment: 7 pages, 2 figures It is now proved that the reduced Hamiltonian is bounded below by the simple N/2 Hamiltonia

    SHARP -- VII. New constraints on the dark matter free-streaming properties and substructure abundance from gravitationally lensed quasars

    Get PDF
    We present an analysis of seven strongly gravitationally lensed quasars and the corresponding constraints on the properties of dark matter. Our results are derived by modelling the lensed image positions and flux-ratios using a combination of smooth macro models and a population of low-mass haloes within the mass range 10^6 to 10^9 Msun. Our lens models explicitly include higher-order complexity in the form of stellar discs and luminous satellites, as well as low-mass haloes located along the observed lines of sight for the first time. Assuming a Cold Dark Matter (CDM) cosmology, we infer an average total mass fraction in substructure of f_sub = 0.012^{+0.007}_{-0.004} (68 per cent confidence limits), which is in agreement with the predictions from CDM hydrodynamical simulations to within 1 sigma. This result is closer to the predictions than those from previous studies that did not include line-of-sight haloes. Under the assumption of a thermal relic dark matter model, we derive a lower limit on the particle relic mass of m th > 5.58 keV (95 per cent confidence limits), which is consistent with a value of m_th > 5.3 keV from the recent analysis of the Ly-alpha forest. We also identify two main sources of possible systematic errors and conclude that deeper investigations in the complex structure of lens galaxies as well as the size of the background sources should be a priority for this field.Comment: 14 pages, 7 figures, accepted for publication in MNRA
    • …
    corecore