1,486 research outputs found

    Energy Saving In Data Centers

    Get PDF
    Globally CO2 emissions attributable to Information Technology are on par with those resulting from aviation. Recent growth in cloud service demand has elevated energy efficiency of data centers to a critical area within green computing. Cloud computing represents a backbone of IT services and recently there has been an increase in high-definition multimedia delivery, which has placed new burdens on energy resources. Hardware innovations together with energy-efficient techniques and algorithms are key to controlling power usage in an ever-expanding IT landscape. This special issue contains a number of contributions that show that data center energy efficiency should be addressed from diverse vantage points. © 2017 by the authors. Licensee MDPI, Basel, Switzerland

    Copyright, an Incentive or a Burden?

    Get PDF
    A copyright provides protection for original artistic or literary work and is valid for the life of the owner plus 70 years. There is a growing tension between creative practices that require access to content that is often copyrighted, and increasingly restrictive intellectual property laws and policies governing access to copyrighted content. Very recently this has played out in the law suit between the media corporation Viacom and the Internet portal YouTube, which is owned by Google. This is against the background of a steadily emerging open source and creative commons culture. Milestones in the open source movement are the OpenOffice office suite, Netscape's publication of the source code for its product as open software, Google's library project, various free archives for scientific dissemination, such as Cornell University's ArXiv.copyright, sharing, open sources

    Energy Efficiency and Renewable Energy Management with Multi-State Power-Down Systems

    Get PDF
    A power-down system has an on-state, an off-state, and a finite or infinite number of intermediate states. In the off-state, the system uses no energy and in the on-state energy it is used fully. Intermediate states consume only some fraction of energy but switching back to the on-state comes at a cost. Previous work has mainly focused on asymptotic results for systems with a large number of states. In contrast, the authors study problems with a few states as well as systems with one continuous state. Such systems play a role in energy-efficiency for information technology but are especially important in the management of renewable energy. The authors analyze power-down problems in the framework of online competitive analysis as to obtain performance guarantees in the absence of reliable forecasting. In a discrete case, the authors give detailed results for the case of three and five states, which corresponds to a system with on-off states and three additional intermediate states “power save”, “suspend”, and “hibernate”. The authors use a novel balancing technique to obtain optimally competitive solutions. With this, the authors show that the overall best competitive ratio for three-state systems is 95 role= presentation style= box-sizing: border-box; max-height: none; display: inline; line-height: normal; text-align: left; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative; \u3e95 and the authors obtain optimal ratios for various five state systems. For the continuous case, the authors develop various strategies, namely linear, optimal-following, progressive and exponential. The authors show that the best competitive strategies are those that follow the offline schedule in an accelerated manner. Strategy “progressive” consistently produces competitive ratios significantly better than 2

    Data Analytics and Optimization for Decision Support

    Get PDF

    Evaluation of Continuous Power-Down Schemes

    Get PDF
    We consider a power-down system with two states—“on” and “off”—and a continuous set of power states. The system has to respond to requests for service in the “on” state and, after service, the system can power off or switch to any of the intermediate power-saving states. The choice of states determines the cost to power on for subsequent requests. The protocol for requests is “online”, which means that the decision as to which intermediate state (or the off-state) the system will switch has to be made without knowledge of future requests. We model a linear and a non-linear system, and we consider different online strategies, namely piece-wise linear, logarithmic and exponential. We provide results under online competitive analysis, which have relevance for the integration of renewable energy sources into the smart grid. Our analysis shows that while piece-wise linear systems are not specific for any type of system, logarithmic strategies work well for slack systems, whereas exponential systems are better suited for busy systems

    Discovery of multi-anion antiperovskites X<sub>6</sub>NFSn<sub>2</sub> (X = Ca, Sr) as promising thermoelectric materials by computational screening

    Get PDF
    The thermoelectric performance of existing perovskites lags far behind that of state-of-the-art thermoelectric materials such as SnSe. Despite halide perovskites showing promising thermoelectric properties, namely, high Seebeck coefficients and ultralow thermal conductivities, their thermoelectric performance is significantly restricted by low electrical conductivities. Here, we explore new multi-anion antiperovskites X6NFSn2 (X = Ca, Sr, and Ba) via B-site anion mutation in antiperovskite and global structure searches and demonstrate their phase stability by first-principles calculations. Ca6NFSn2 and Sr6NFSn2 exhibit decent Seebeck coefficients and ultralow lattice thermal conductivities (&lt;1 W m−1 K−1). Notably, Ca6NFSn2 and Sr6NFSn2 show remarkably larger electrical conductivities compared to the halide perovskite CsSnI3. The combined superior electrical and thermal properties of Ca6NFSn2 and Sr6NFSn2 lead to high thermoelectric figures of merit (ZTs) of ∌1.9 and ∌2.3 at high temperatures. Our exploration of multi-anion antiperovskites X6NFSn2 (X = Ca, Sr) realizes the “phonon-glass, electron-crystal” concept within the antiperovskite structure

    The bottlenecks of Cs2AgBiBr6 solar cells : how contacts and slow transients limit the performance

    Get PDF
    Cs2AgBiBr6 has attracted much interest as a potential lead-free alternative for perovskite solar cells. Although this material offers encouraging optoelectronic features, severe bottlenecks limit the performance of the resulting solar cells to a power conversion efficiency of below 3%. Here, the performance-limiting factors of this material are investigated in full solar cells featuring various architectures. It is found that the photovoltaic parameters of Cs2AgBiBr6-based solar cells strongly depend on the scan speed of the J/V measurements, suggesting a strong impact of ionic conductivity in the material. Moreover, a sign change of the photocurrent for bias voltages above 0.9 V during the measurement of the external quantum efficiency (EQE) is revealed, which can be explained by non-selective contacts. The radiative loss of the VOC from sensitive subgap-EQE measurements is calculated and it is revealed that the loss is caused by a low external luminescence yield and therefore a high non-radiative recombination, supported by the first report of a strongly red shifted electroluminescence signal between 800 and 1000 nm. Altogether, these results point to a poor selectivity of the contacts and charge transport layers, caused by poor energy level alignment that can be overcome by optimizing the architecture of the solar cell
    • 

    corecore