108 research outputs found

    Antibiotic Susceptibility Testing of Grown Blood Cultures by Combining Culture and Real-Time Polymerase Chain Reaction Is Rapid and Effective

    Get PDF
    Background: Early administration of appropriate antibiotic therapy in bacteraemia patients dramatically reduces mortality. A new method for RApid Molecular Antibiotic Susceptibility Testing (RAMAST) that can be applied directly to positive blood cultures was developed and evaluated. Methodology/Principal Findings: Growth curves and antibiotic susceptibility of blood culture isolates (Staphylococcus aureus, enterococci and (facultative) aerobic Gram-negative rods) were determined by incubating diluted blood cultures with and without antibiotics, followed by a quantitative universal 16S PCR to detect the presence or absence of growth. Testing 114 positive blood cultures, RAMAST showed an agreement with microbroth dilution of 96.7 % for Gram-negative rods, with a minor error (false-susceptibility with a intermediate resistant strain) rate of 1.9%, a major error (false resistance) rate of 0.8 % and a very major error (false susceptibility) rate of 0.6%. Agreement for S.aureus was 97.9%, with a very major error rate of 2.1%. Enterococcus species showed 95.0 % agreement, with a major error rate of 5.0%. These agreements are comparable with those of the Phoenix system. Starting from a positive blood culture, the test was completed within 9 hours. Conclusions/Significance: This new rapid method for antibiotic susceptibility testing can potentially provide accurat

    Design of the FemCure study: prospective multicentre study on the transmission of genital and extra-genital Chlamydia trachomatis infections in women receiving routine care

    Get PDF
    BACKGROUND: In women, anorectal infections with Chlamydia trachomatis (CT) are about as common as genital CT, yet the anorectal site remains largely untested in routine care. Anorectal CT frequently co-occurs with genital CT and may thus often be treated co-incidentally. Nevertheless, post-treatment detection of CT at both anatomic sites has been demonstrated. It is unknown whether anorectal CT may play a role in post-treatment transmission. This study, called FemCure, in women who receive routine treatment (either azithromycin or doxycycline) aims to understand the post-treatment transmission of anorectal CT infections, i.e., from their male sexual partner(s) and from and to the genital region of the same woman. The secondary objective is to evaluate other reasons for CT detection by nucleic acid amplification techniques (NAAT) such as treatment failure, in order to inform guidelines to optimize CT control. METHODS: A multicentre prospective cohort study (FemCure) is set up in which genital and/or anorectal CT positive women (n = 400) will be recruited at three large Dutch STI clinics located in South Limburg, Amsterdam and Rotterdam. The women self-collect anorectal and vaginal swabs before treatment, and at the end of weeks 1, 2, 4, 6, 8, 10, and 12. Samples are tested for presence of CT-DNA (by NAAT), load (by quantitative polymerase chain reaction -PCR), viability (by culture and viability PCR) and CT type (by multilocus sequence typing). Sexual exposure is assessed by online self-administered questionnaires and by testing samples for Y chromosomal DNA. Using logistic regression models, the impact of two key factors (i.e., sexual exposure and alternate anatomic site of infection) on detection of anorectal and genital CT will be assessed. DISCUSSION: The FemCure study will provide insight in the role of anorectal chlamydia infection in maintaining the CT burden in the context of treatment, and it will provide practical recommendations to reduce avoidable transmission. Implications will improve care strategies that take account of anorectal CT. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02694497

    Population Impact of Girls-Only Human Papillomavirus 16/18 Vaccination in the Netherlands: Cross-Protective and Second-Order Herd Effects

    Get PDF
    Background: Human papillomavirus (HPV) vaccination programs achieve substantial population-level impact, with effects extending beyond protection of vaccinated individuals. We assessed trends in HPV prevalence up to 8 years postvaccination among men and women in the Netherlands, where bivalent HPV vaccination, targeting HPV types 16/18, has been offered to (pre)adolescent girls since 2009 with moderate vaccination coverage. Methods: We used data from the PASSYON study, a survey initiated in 2009 (prevaccination) and repeated biennially among 16-to 24-year-old visitors of sexual health centers. We studied genital HPV positivity from 2009 to 2017 among women, heterosexual men, and unvaccinated women using Poisson generalized estimating equation models, adjusted for individual-and population-level confounders. Trends were studied for 25 HPV types detected by the SPF10-LiPA25 platform. Results: A total of 6354 women (64.7% self-reported unvaccinated) and 2414 heterosexual men were included. Percentual declines in vaccine types HPV-16/18 were observed for all women (12.6% per year [95% confidence interval {CI}, 10.6-14.5]), heterosexual men (13.0% per year [95% CI, 8.3-17.5]), and unvaccinated women (5.4% per year [95% CI, 2.9-7.8]). We observed significant declines in HPV-31 (all women and heterosexual men), HPV-45 (all women), and in all high-risk HPV types pooled (all women and heterosexual men). Significant increases were observed for HPV-56 (all women) and HPV-52 (unvaccinated women). Conclusions: Our results provide evidence for first-order herd effects among heterosexual men against HPV-16/18 and cross-protective types. Additionally, we show second-order herd effects against vaccine types among unvaccinated women. These results are promising regarding population-level and clinical impact of girls-only bivalent HPV vaccination in a country with moderate vaccine uptake

    Simultaneous separation and detection of hepatitis A virus and norovirus in produce

    No full text
    Two sample preparation methods based on electrostatic binding were tested to simultaneously separate different viral particles from different food surfaces (lettuce, strawberry, raspberries and green onions). Both methods were evaluated using a multiplex real-time PCR assay designed for detection of hepatitis A virus and norovirus GI and GII. Single and multiplex detection limits were determined as 10(1) viral particles for HAV and norovirus GII, and 10(2) viral particles for norovirus CI using artificial templates, one HAV strain and different norovirus isolates. Manual extraction based on silica columns was found more suitable for viral RNA preparation than an automatic extraction technique. Consistent detection of infectious amounts (2-20 viral particles/g) of HAV and norovirus in different food samples was achievable when the viruses were concentrated using cationically charged filters rather than with cationically charged beads in a flow-through system. Consequently, the developed multiplex detection protocol provides a promising alternative for rapid and simultaneous detection of viral pathogens in foods

    Direct Quantitation and Detection of Salmonellae in Biological Samples without Enrichment, Using Two-Step Filtration and Real-Time PCR

    No full text
    A new two-step filtration protocol followed by a real-time PCR assay based on SYBR green I detection was developed to directly quantitate salmonellae in two types of biological samples: i.e., chicken rinse and spent irrigation water. Four prefiltration filters, one type of final filter, and six protocols for recovery of salmonellae from the final filter were evaluated to identify an effective filtration protocol. This method was then combined with a real-time PCR assay based on detection of the invA gene. The best results were obtained by subsequent filtration of 100 ml of chicken rinse or 100 ml of spent irrigation water through filters with pore diameters of >40 μm to remove large particles and of 0.22 μm to recover the Salmonella cells. After this, the Salmonella cells were removed from the filter by vortexing in 1 ml of physiological saline, and this sample was then subjected to real-time quantitative PCR. The whole procedure could be completed within 3 h from sampling to quantitation, and cell numbers as low as 7.5 × 10(2) CFU per 100-ml sample could be quantified. Below this limit, qualitative detection of concentrations as low as 2.2 CFU/100 ml sample was possible on occasion. This study has contributed to the development of a simple, rapid, and reliable method for quantitation of salmonellae in food without the need for sample enrichment or DNA extraction

    Molecular Probes for Diagnosis of Clinically Relevant Bacterial Infections in Blood Culturesâ–¿

    No full text
    Broad-range real-time PCR and sequencing of the 16S rRNA gene region is a widely known method for the detection and identification of bacteria in clinical samples. However, because of the need for sequencing, such identification of bacteria is time-consuming. The aim of our study was to develop a more rapid 16S real-time PCR-based identification assay using species- or genus-specific probes. The Gram-negative bacteria were divided into Pseudomonas species, Pseudomonas aeruginosa, Escherichia coli, and other Gram-negative species. Within the Gram-positive species, probes were designed for Staphylococcus species, Staphylococcus aureus, Enterococcus species, Streptococcus species, and Streptococcus pneumoniae. The assay also included a universal probe within the 16S rRNA gene region for the detection of all bacterial DNA. The assay was evaluated with a collection of 248 blood cultures. In this study, the universal probe and the probes targeting Pseudomonas spp., P. aeruginosa, E. coli, Streptococcus spp., S. pneumoniae, Enterococcus spp., and Staphylococcus spp. all had a sensitivity and specificity of 100%. The probe specific for S. aureus showed eight discrepancies, resulting in a sensitivity of 100% and a specificity of 93%. These data showed high agreement between conventional testing and our novel real-time PCR assay. Furthermore, this assay significantly reduced the time needed for identification. In conclusion, using pathogen-specific probes offers a faster alternative for pathogen detection and could improve the diagnosis of bloodstream infections

    Effect of Organic Solvents on the Yield of Solvent-Tolerant Pseudomonas putida S12

    No full text
    Solvent-tolerant microorganisms are useful in biotransformations with whole cells in two-phase solvent-water systems. The results presented here describe the effects that organic solvents have on the growth of these organisms. The maximal growth rate of Pseudomonas putida S12, 0.8 h(−1), was not affected by toluene in batch cultures, but in chemostat cultures the solvent decreased the maximal growth rate by nearly 50%. Toluene, ethylbenzene, propylbenzene, xylene, hexane, and cyclohexane reduced the biomass yield, and this effect depended on the concentration of the solvent in the bacterial membrane and not on its chemical structure. The dose response to solvents in terms of yield was linear up to an approximately 200 mM concentration of solvent in the bacterial membrane, both in the wild type and in a mutant lacking an active efflux system for toluene. Above this critical concentration the yield of the wild type remained constant at 0.2 g of protein/g of glucose with increasing concentrations of toluene. The reduction of the yield in the presence of solvents is due to a maintenance higher by a factor of three or four as well as to a decrease of the maximum growth yield by 33%. Therefore, energy-consuming adaptation processes as well as the uncoupling effect of the solvents reduce the yield of the tolerant cells
    • …
    corecore