5,343 research outputs found

    Critical exponents of a three dimensional O(4) spin model

    Get PDF
    By Monte Carlo simulation we study the critical exponents governing the transition of the three-dimensional classical O(4) Heisenberg model, which is considered to be in the same universality class as the finite-temperature QCD with massless two flavors. We use the single cluster algorithm and the histogram reweighting technique to obtain observables at the critical temperature. After estimating an accurate value of the inverse critical temperature \Kc=0.9360(1), we make non-perturbative estimates for various critical exponents by finite-size scaling analysis. They are in excellent agreement with those obtained with the 4−ϔ4-\epsilon expansion method with errors reduced to about halves of them.Comment: 25 pages with 8 PS figures, LaTeX, UTHEP-28

    Diffusion-limited reactions on a two-dimensional lattice with binary disorder

    Full text link
    Reaction-diffusion systems where transition rates exhibit quenched disorder are common in physical and chemical systems. We study pair reactions on a periodic two-dimensional lattice, including continuous deposition and spontaneous desorption of particles. Hopping and desorption are taken to be thermally activated processes. The activation energies are drawn from a binary distribution of well depths, corresponding to `shallow' and `deep' sites. This is the simplest non-trivial distribution, which we use to examine and explain fundamental features of the system. We simulate the system using kinetic Monte Carlo methods and provide a thorough understanding of our findings. We show that the combination of shallow and deep sites broadens the temperature window in which the reaction is efficient, compared to either homogeneous system. We also examine the role of spatial correlations, including systems where one type of site is arranged in a cluster or a sublattice. Finally, we show that a simple rate equation model reproduces simulation results with very good accuracy.Comment: 9 pages, 5 figure

    Population structure, biomass and production of the West African lucinid Keletistes rhizoecus (Bivalvia, Mollusca) in Sivibilagbara swamp at Bodo Creek, Niger Delta, Nigeria

    Get PDF
    The West African lucinid bivalve Keletistes rhizoecus (Oliver, Basteria 50:47-64, 1986) is only known from the Niger Delta in Nigeria. Due to inaccessibility of its habitat population biology, growth parameters, biomass, and annual secondary production are unknown. The danger of oil pollution threatens the localities where this species occurs. Hence, ecological characteristics of the species were investigated quantitatively from May 2007 to April 2008 at Sivibilagbara, a protected mangrove swamp at Bodo Creek in the lower Niger Delta. Density of this chemosymbiotic lucinid was significantly higher than data previously reported. Temporal size distribution of the population showed minor changes due chiefly to recruitment and growth increments. Recruits peaked in February and September. The species lifespan is estimated to be 1.2 years. The biomass and production values are relatively high, but comparable to those of other bivalve species, especially those from nearby Andoni intertidal flats

    The chiral Anomalous Hall effect in re-entrant AuFe alloys

    Full text link
    The Hall effect has been studied in a series of AuFe samples in the re-entrant concentration range, as well as in part of the spin glass range. An anomalous Hall contribution linked to the tilting of the local spins can be identified, confirming theoretical predictions of a novel topological Hall term induced when chirality is present. This effect can be understood in terms of Aharonov-Bohm-like intrinsic current loops arising from successive scatterings by canted local spins. The experimental measurements indicate that the chiral signal persists, meaning scattering within the nanoscopic loops remains coherent, up to temperatures of the order of 150 K.Comment: 7 pages, 11 eps figures Published version. Minor change

    Cluster algorithms

    Get PDF
    Cluster algorithms for classical and quantum spin systems are discussed. In particular, the cluster algorithm is applied to classical O(N) lattice actions containing interactions of more than two spins. The performance of the multi-cluster and single--cluster methods, and of the standard and improved estimators are compared. (Lecture given at the summer school on `Advances in Computer Simulations', Budapest, July 1996.)Comment: 17 pages, Late

    Robust Magnetic Polarons in Type-II (Zn,Mn)Te Quantum Dots

    Full text link
    We present evidence of magnetic ordering in type-II (Zn, Mn) Te quantum dots. This ordering is attributed to the formation of bound magnetic polarons caused by the exchange interaction between the strongly localized holes and Mn within the dots. In our photoluminescence studies, the magnetic polarons are detected at temperatures up to ~ 200 K, with a binding energy of ~ 40 meV. In addition, these dots display an unusually small Zeeman shift with applied field (2 meV at 10 T). This behavior is explained by a small and weakly temperature-dependent magnetic susceptibility due to anti-ferromagnetic coupling of the Mn spins

    Magnetic Breakdown in the electron-doped cuprate superconductor Nd2−x_{2-x}Cex_xCuO4_4: the reconstructed Fermi surface survives in the strongly overdoped regime

    Full text link
    We report on semiclassical angle-dependent magnetoresistance oscillations (AMRO) and the Shubnikov-de Haas effect in the electron-overdoped cuprate superconductor Nd2−x_{2-x}Cex_xCuO4_4. Our data provide convincing evidence for magnetic breakdown in the system. This shows that a reconstructed multiply-connected Fermi surface persists, at least at strong magnetic fields, up to the highest doping level of the superconducting regime. Our results suggest an intimate relation between translational symmetry breaking and the superconducting pairing in the electron-doped cuprate superconductors.Comment: 5 pages, 4 figures, submitted to PR

    Origin of the reduced exchange bias in epitaxial FeNi(111)/CoO(111) bilayer

    Full text link
    We have employed Soft and Hard X-ray Resonant Magnetic Scattering and Polarised Neutron Diffraction to study the magnetic interface and the bulk antiferromagnetic domain state of the archetypal epitaxial Ni81_{81}Fe19_{19}(111)/CoO(111) exchange biased bilayer. The combination of these scattering tools provides unprecedented detailed insights into the still incomplete understanding of some key manifestations of the exchange bias effect. We show that the several orders of magnitude difference between the expected and measured value of exchange bias field is caused by an almost anisotropic in-plane orientation of antiferromagnetic domains. Irreversible changes of their configuration lead to a training effect. This is directly seen as a change in the magnetic half order Bragg peaks after magnetization reversal. A 30 nm size of antiferromagnetic domains is extracted from the width the (1/2 1/2 1/2) antiferromagnetic magnetic peak measured both by neutron and x-ray scattering. A reduced blocking temperature as compared to the measured antiferromagnetic ordering temperature clearly corresponds to the blocking of antiferromagnetic domains. Moreover, an excellent correlation between the size of the antiferromagnetic domains, exchange bias field and frozen-in spin ratio is found, providing a comprehensive understanding of the origin of exchange bias in epitaxial systems.Comment: 8 pages, 5 figures, submitte

    2-D Radiative Transfer in Protostellar Envelopes: I. Effects of Geometry on Class I Sources

    Full text link
    We present 2-D radiation transfer models of Class I Protostars and show the effect of including more realistic geometries on the resulting spectral energy distributions and images. We begin with a rotationally flattened infalling envelope as our comparison model, and add a flared disk and bipolar cavity. The disk affects the spectral energy distribution most strongly at edge-on inclinations, causing a broad dip at about 10 um (independent of the silicate feature) due to high extinction and low scattering albedo in this wavelength region. The bipolar cavities allow more direct stellar+disk radiation to emerge into polar directions, and more scattering radiation to emerge into all directions. The wavelength-integrated flux, often interpreted as luminosity, varies with viewing angle, with pole-on viewing angles seeing 2-4 times as much flux as edge-on, depending on geometry. Thus, observational estimates of luminosity should take into account the inclination of a source. The envelopes with cavities are significantly bluer in near-IR and mid-IR color-color plots than those without cavities. Using 1-D models to interpret Class I sources with bipolar cavities would lead to an underestimate of envelope mass and an overestimate of the implied evolutionary state. We compute images at near-, mid-, and far-IR wavelengths. We find that the mid-IR colors and images are sensitive to scattering albedo, and that the flared disk shadows the midplane on large size scales at all wavelengths plotted. Finally, our models produce polarization spectra which can be used to diagnose dust properties, such as albedo variations due to grain growth. Our results of polarization across the 3.1 um ice feature agree well with observations for ice mantles covering 5% of the radius of the grains.Comment: Accepted for publication in ApJ, 37 pages, 13 figures (several figures reduced in quality; find original version at http://gemelli.colorado.edu/~bwhitney/preprints.html

    Large-q asymptotics of the random bond Potts model

    Full text link
    We numerically examine the large-q asymptotics of the q-state random bond Potts model. Special attention is paid to the parametrisation of the critical line, which is determined by combining the loop representation of the transfer matrix with Zamolodchikov's c-theorem. Asymptotically the central charge seems to behave like c(q) = 1/2 log_2(q) + O(1). Very accurate values of the bulk magnetic exponent x_1 are then extracted by performing Monte Carlo simulations directly at the critical point. As q -> infinity, these seem to tend to a non-trivial limit, x_1 -> 0.192 +- 0.002.Comment: 9 pages, no figure
    • 

    corecore