9,229 research outputs found

    A study of event traffic during the shared manipulation of objects within a collaborative virtual environment

    Get PDF
    Event management must balance consistency and responsiveness above the requirements of shared object interaction within a Collaborative Virtual Environment (CVE) system. An understanding of the event traffic during collaborative tasks helps in the design of all aspects of a CVE system. The application, user activity, the display interface, and the network resources, all play a part in determining the characteristics of event management. Linked cubic displays lend themselves well to supporting natural social human communication between remote users. To allow users to communicate naturally and subconsciously, continuous and detailed tracking is necessary. This, however, is hard to balance with the real-time consistency constraints of general shared object interaction. This paper aims to explain these issues through a detailed examination of event traffic produced by a typical CVE, using both immersive and desktop displays, while supporting a variety of collaborative activities. We analyze event traffic during a highly collaborative task requiring various forms of shared object manipulation, including the concurrent manipulation of a shared object. Event sources are categorized and the influence of the form of object sharing as well as the display device interface are detailed. With the presented findings the paper wishes to aid the design of future systems

    Quantum States of Neutrons in Magnetic Thin Films

    Full text link
    We have studied experimentally and theoretically the interaction of polarized neutrons with magnetic thin films and magnetic multilayers. In particular, we have analyzed the behavior of the critical edges for total external reflection in both cases. For a single film we have observed experimentally and theoretically a simple behavior: the critical edges remain fixed and the intensity varies according to the angle between the polarization axis and the magnetization vector inside the film. For the multilayer case we find that the critical edges for spin up and spin down polarized neutrons move towards each other as a function of the angle between the magnetization vectors in adjacent ferromagnetic films. Although the results for multilayers and single thick layers appear to be different, in fact the same spinor method explains both results. An interpretation of the critical edges behavior for the multilyers as a superposition of ferromagnetic and antifferomagnetic states is given.Comment: 6 pages, 5 figure

    Processor Sharing Flows in the Internet

    Full text link

    The Anomalous Hall effect in re-entrant AuFe alloys and the real space Berry phase

    Full text link
    The Hall effect has been studied in a series of AuFe samples in the re-entrant concentration range, as well as in the spin glass range. The data demonstrate that the degree of canting of the local spins strongly modifies the anomalous Hall effect, in agreement with theoretical predictions associating canting, chirality and a real space Berry phase. The canonical parametrization of the Hall signal for magnetic conductors becomes inappropriate when local spins are canted.Comment: 4 pages, 1 eps figur

    A Stellar Rotation Census of B Stars: from ZAMS to TAMS

    Full text link
    Two recent observing campaigns provide us with moderate dispersion spectra of more than 230 cluster and 370 field B stars. Combining them and the spectra of the B stars from our previous investigations (\sim430 cluster and \sim100 field B stars) yields a large, homogeneous sample for studying the rotational properties of B stars. We derive the projected rotational velocity VsiniV\sin i, effective temperature, gravity, mass, and critical rotation speed VcritV_{\rm crit} for each star. We find that the average VsiniV\sin i is significantly lower among field stars because they are systematically more evolved and spun down than their cluster counterparts. The rotational distribution functions of Veq/VcritV_{\rm eq}/V_{\rm crit} for the least evolved B stars show that lower mass B stars are born with a larger proportion of rapid rotators than higher mass B stars. However, the upper limit of Veq/VcritV_{\rm eq}/V_{\rm crit} that may separate normal B stars from emission line Be stars (where rotation promotes mass loss into a circumstellar disk) is smaller among the higher mass B stars. We compare the evolutionary trends of rotation (measured according to the polar gravity of the star) with recent models that treat internal mixing. The spin-down rates observed in the high mass subset (9M\sim 9 M_\odot) agree with predictions, but the rates are larger for the low mass group (3M\sim 3 M_\odot). The faster spin down in the low mass B stars matches well with the predictions based on conservation of angular momentum in individual spherical shells. Our results suggest the fastest rotators (that probably correspond to the emission line Be stars) are probably formed by evolutionary spin up (for the more massive stars) and by mass transfer in binaries (for the full range of B star masses).Comment: 44 pages, 10 figures, accepted for publication in Ap

    Transition from van-der-Waals to H Bonds dominated Interaction in n-Propanol physisorbed on Graphite

    Full text link
    Multilayer sorption isotherms of 1-propanol on graphite have been measured by means of high-resolution ellipsometry within the liquid regime of the adsorbed film for temperatures ranging from 180 to 260 K. In the first three monolayers the molecules are oriented parallel to the substrate and the growth is roughly consistent with the Frenkel-Halsey-Hill-model (FHH) that is obeyed in van-der-Waals systems on strong substrates. The condensation of the fourth and higher layers is delayed with respect to the FHH-model. The fourth layer is actually a bilayer. Furthermore there is indication of a wetting transition. The results are interpreted in terms of hydrogen-bridge bonding within and between the layers.Comment: 4 pages, 3 figure

    Monte Carlo studies of antiferromagnetic spin models in three dimensions

    Full text link
    We study several antiferromagnetic formulations of the O(3) spin model in three dimensions by means of Monte Carlo simulations. We discuss about the vacua properties and analyze the phase transitions. Using Finite Size Scaling analysis we conclude that all phase transitions found are of first orderComment: 4 pages, 2 Postscript figures. Contribution to Lattice '9

    In-Network Outlier Detection in Wireless Sensor Networks

    Full text link
    To address the problem of unsupervised outlier detection in wireless sensor networks, we develop an approach that (1) is flexible with respect to the outlier definition, (2) computes the result in-network to reduce both bandwidth and energy usage,(3) only uses single hop communication thus permitting very simple node failure detection and message reliability assurance mechanisms (e.g., carrier-sense), and (4) seamlessly accommodates dynamic updates to data. We examine performance using simulation with real sensor data streams. Our results demonstrate that our approach is accurate and imposes a reasonable communication load and level of power consumption.Comment: Extended version of a paper appearing in the Int'l Conference on Distributed Computing Systems 200

    Magnetoelectric effects in an organo-metallic quantum magnet

    Full text link
    We observe a bilinear magnetic field-induced electric polarization of 50 μC/m2\mu C/m^2 in single crystals of NiCl2_2-4SC(NH2_2)2_2 (DTN). DTN forms a tetragonal structure that breaks inversion symmetry, with the highly polar thiourea molecules all tilted in the same direction along the c-axis. Application of a magnetic field between 2 and 12 T induces canted antiferromagnetism of the Ni spins and the resulting magnetization closely tracks the electric polarization. We speculate that the Ni magnetic forces acting on the soft organic lattice can create significant distortions and modify the angles of the thiourea molecules, thereby creating a magnetoelectric effect. This is an example of how magnetoelectric effects can be constructed in organo-metallic single crystals by combining magnetic ions with electrically polar organic elements.Comment: 3 pages, 3 figure
    corecore