193 research outputs found
Mucinous cystadenoma of the appendix misdiagnosed as cystic hydatid disease of the liver: a case report
<p>Abstract</p> <p>Introduction</p> <p>Primary neoplastic lesions presenting with a mucocele of the appendix are very rare and can be divided into benign variants of mucinous adenomas or cystadenomas, mucinous tumours of uncertain malignant potential or mucinous cystadenocarcinomas. Most of these tumourous mucoceles are asymptomatic and are found incidentally. The major complication of neoplastic mucinous appendiceal tumours is the development of a pseudomyxoma peritonei due to spreading of mucin-producing cells within the abdominal cavity.</p> <p>Case presentation</p> <p>A 44-year-old man presented with a history of non-specific symptoms of right upper abdominal pain. Abdominal ultrasound and computed tomography scan identified a cystic mass consistent with the morphological characteristics of an echinococcal hydatid cyst. After completing systemic albendazole therapy, an explorative laparotomy revealed a cystic tumour of the appendix. Ileocaecal resection was performed and pathology reports confirmed the diagnosis of a mucinous cystadenoma of the appendix. The postoperative course was uneventful.</p> <p>Conclusion</p> <p>Here we present the case of a man with a mucinous cystadenoma of the appendix mimicking cystic hydatid disease. We discuss the importance of re-evaluation and differential diagnostic reflections in cases of appendiceal mucocele.</p
Phage capsid nanoparticles with defined ligand arrangement block influenza virus entry
Multivalent interactions at biological interfaces occur frequently in nature and mediate recognition and interactions in essential physiological processes such as cell-to-cell adhesion. Multivalency is also a key principle that allows tight binding between pathogens and host cells during the initial stages of infection. One promising approach to prevent infection is the design of synthetic or semisynthetic multivalent binders that interfere with pathogen adhesion1,2,3,4. Here, we present a multivalent binder that is based on a spatially defined arrangement of ligands for the viral spike protein haemagglutinin of the influenza A virus. Complementary experimental and theoretical approaches demonstrate that bacteriophage capsids, which carry host cell haemagglutinin ligands in an arrangement matching the geometry of binding sites of the spike protein, can bind to viruses in a defined multivalent mode. These capsids cover the entire virus envelope, thus preventing its binding to the host cell as visualized by cryo-electron tomography. As a consequence, virus infection can be inhibited in vitro, ex vivo and in vivo. Such highly functionalized capsids present an alternative to strategies that target virus entry by spike-inhibiting antibodies5 and peptides6 or that address late steps of the viral replication cycle
Supersymmetric Nonlinear O(3) Sigma Model on the Lattice
A supersymmetric extension of the nonlinear O(3) sigma model in two spacetime
dimensions is investigated by means of Monte Carlo simulations. We argue that
it is impossible to construct a lattice action that implements both the O(3)
symmetry as well as at least one supersymmetry exactly at finite lattice
spacing. It is shown by explicit calculations that previously proposed
discretizations fail to reproduce the exact symmetries of the target manifold
in the continuum limit. We provide an alternative lattice action with exact
O(3) symmetry and compare two approaches based on different derivative
operators. Using the nonlocal SLAC derivative for the quenched model on
moderately sized lattices we extract the value {\sigma}(2, u_0) = 1.2604(13)
for the step scaling function at u_0 = 1.0595, to be compared with the exact
value 1.261210. For the supersymmetric model with SLAC derivative the discrete
chiral symmetry is maintained but we encounter strong sign fluctuations,
rendering large lattice simulations ineffective. By applying the Wilson
prescription, supersymmetry and chiral symmetry are broken explicitly at finite
lattice spacing, though there is clear evidence that both are restored in the
continuum limit by fine tuning of a single mass parameter.Comment: 35 pages, 36 figures, 2 tables; updated version as accepted by JHE
RNOP-09: Pegylated liposomal doxorubicine and prolonged temozolomide in addition to radiotherapy in newly diagnosed glioblastoma - a phase II study
BACKGROUND: Although Temozolomide is effective against glioblastoma, the prognosis remains dismal and new regimens with synergistic activity are sought for. METHODS: In this phase-I/II trial, pegylated liposomal doxorubicin (Caelyx, PEG-Dox) and prolonged administration of Temozolomide in addition to radiotherapy was investigated in 63 patients with newly diagnosed glioblastoma. In phase-I, PEG-Dox was administered in a 3-by-3 dose-escalation regimen. In phase-II, 20 mg/m2 PEG-Dox was given once prior to radiotherapy and on days 1 and 15 of each 28-day cycle starting 4 weeks after radiotherapy. Temozolomide was given in a dose of 75 mg/m2 daily during radiotherapy (60 Gy) and 150-200 mg/m2 on days 1-5 of each 28-day cycle for 12 cycles or until disease progression. RESULTS: The toxicity of the combination of PEG-Dox, prolonged administration of Temozolomide, and radiotherapy was tolerable. The progression free survival after 12 months (PFS-12) was 30.2%, the median overall survival was 17.6 months in all patients including the ones from Phase-I. None of the endpoints differed significantly from the EORTC26981/NCIC-CE.3 data in a post-hoc statistical comparison. CONCLUSION: Together, the investigated combination is tolerable and feasible. Neither the addition of PEG-Dox nor the prolonged administration of Temozolomide resulted in a meaningful improvement of the patient's outcome as compared to the EORTC26981/NCIC-CE.3 data
Machine-learning guided Venom Induced Dermonecrosis Analysis tooL: VIDAL
Snakebite envenoming is a global public health issue that causes significant morbidity and mortality, particularly in low-income regions of the world. The clinical manifestations of envenomings vary depending on the snake's venom, with paralysis, haemorrhage, and necrosis being the most common and medically relevant effects. To assess the efficacy of antivenoms against dermonecrosis, a preclinical testing approach involves in vivo mouse models that mimic local tissue effects of cytotoxic snakebites in humans. However, current methods for assessing necrosis severity are time-consuming and susceptible to human error. To address this, we present the Venom Induced Dermonecrosis Analysis tooL (VIDAL), a machine-learning-guided image-based solution that can automatically identify dermonecrotic lesions in mice, adjust for lighting biases, scale the image, extract lesion area and discolouration, and calculate the severity of dermonecrosis. We also introduce a new unit, the dermonecrotic unit (DnU), to better capture the complexity of dermonecrosis severity. Our tool is comparable to the performance of state-of-the-art histopathological analysis, making it an accessible, accurate, and reproducible method for assessing dermonecrosis in mice. Given the urgent need to address the neglected tropical disease that is snakebite, high-throughput technologies such as VIDAL are crucial in developing and validating new and existing therapeutics for this debilitating disease
Identification of Retinal Transformation Hot Spots in Developing Drosophila Epithelia
Background: The retinal determination (RD) network is an evolutionarily conserved regulatory circuit that governs early events in the development of eyes throughout the animal kingdom. Ectopic expression of many members of this network leads to the transformation of non-retinal epithelia into eye tissue. An often-overlooked observation is that only particular cell-populations within a handful of tissues are capable of having their primary developmental instructions superseded and overruled. Methodology/Preliminary Findings: Here we confirm that indeed, only a discrete number of cell populations within the imaginal discs that give rise to the head, antenna, legs, wings and halteres have the cellular plasticity to have their developmental fates altered. In contrast to previous reports, we find that all transformable cell populations do not lie within the TGFb or Hedgehog signaling domains. Additionally neither signaling cascade alone is sufficient for non-retinal cell types to be converted into retinal tissue. The transformation ‘‘hot spots’ ’ that we have identified appear to coincide with several previously defined transdetermination ‘‘weak spots’’, suggesting that ectopic eye formation is less the result of one network overriding the orders of another, as previously thought, but rather is the physical manifestation of redirecting cell populations of enormous cellular plasticity. We also demonstrate that the initiation of eye formation in non-retinal tissues occurs asynchronously compared to that of the normal eye suggesting that retinal development is not under the control o
- …