675 research outputs found
Electronic Structure of Calcium Hexaboride within the Weighted Density Approximation
We report calculations of the electronic structure of CaB using the
weighted density approximation (WDA) to density functional theory. We find a
semiconducting band structure with a sizable gap, in contrast to local density
approximation (LDA) results, but in accord with recent experimental data. In
particular, we find an -point band gap of 0.8 eV. The WDA correction of the
LDA error in describing the electronic structure of CaB is discussed in
terms of the orbital character of the bands and the better cancelation of
self-interactions within the WDA.Comment: 1 figur
Absence of the zero bias peak in vortex tunneling spectra of high temperature superconductors?
The c-axis tunneling matrix of high-Tc superconductors is shown to depend
strongly on the in-plane momentum of electrons and vanish along the four nodal
lines of the d(x^2-y^2)-wave energy gap. This anisotropic tunneling matrix
suppresses completely the contribution of the most extended quasiparticles in
the vortex core to the c-axis tunneling current and leads to a spectrum similar
to that of a nodeless superconductor. Our results give a natural explanation of
the absence of the zero bias peak as well as other features observed in the
vortex tunneling spectra of high-Tc cuprates.Comment: 4 pages 3 figures, minor corrections, to appear in Phys Rev
Exponential Decay of Correlations Implies Area Law
We prove that a finite correlation length, i.e. exponential decay of
correlations, implies an area law for the entanglement entropy of quantum
states defined on a line. The entropy bound is exponential in the correlation
length of the state, thus reproducing as a particular case Hastings proof of an
area law for groundstates of 1D gapped Hamiltonians.
As a consequence, we show that 1D quantum states with exponential decay of
correlations have an efficient classical approximate description as a matrix
product state of polynomial bond dimension, thus giving an equivalence between
injective matrix product states and states with a finite correlation length.
The result can be seen as a rigorous justification, in one dimension, of the
intuition that states with exponential decay of correlations, usually
associated with non-critical phases of matter, are simple to describe. It also
has implications for quantum computing: It shows that unless a pure state
quantum computation involves states with long-range correlations, decaying at
most algebraically with the distance, it can be efficiently simulated
classically.
The proof relies on several previous tools from quantum information theory -
including entanglement distillation protocols achieving the hashing bound,
properties of single-shot smooth entropies, and the quantum substate theorem -
and also on some newly developed ones. In particular we derive a new bound on
correlations established by local random measurements, and we give a
generalization to the max-entropy of a result of Hastings concerning the
saturation of mutual information in multiparticle systems. The proof can also
be interpreted as providing a limitation on the phenomenon of data hiding in
quantum states.Comment: 35 pages, 6 figures; v2 minor corrections; v3 published versio
Spin-polarized transport and Andreev reflection in semiconductor/superconductor hybrid structures
We show that spin-polarized electron transmission across
semiconductor/superconductor (Sm/S) hybrid structures depends sensitively on
the degree of spin polarization as well as the strengths of potential and
spin-flip scattering at the interface. We demonstrate that increasing the Fermi
velocity mismatch in the Sm and S regions can lead to enhanced junction
transparency in the presence of spin polarization. We find that the Andreev
reflection amplitude at the superconducting gap energy is a robust measure of
the spin polarization magnitude, being independent of the strengths of
potential and spin-flip scattering and the Fermi velocity of the
superconductor.Comment: 4 pages, 2 figure
Thermodynamic Properties of the One-Dimensional Extended Quantum Compass Model in the Presence of a Transverse Field
The presence of a quantum critical point can significantly affect the
thermodynamic properties of a material at finite temperatures. This is
reflected, e.g., in the entropy landscape S(T; c) in the vicinity of a quantum
critical point, yielding particularly strong variations for varying the tuning
parameter c such as magnetic field. In this work we have studied the
thermodynamic properties of the quantum compass model in the presence of a
transverse field. The specific heat, entropy and cooling rate under an
adiabatic demagnetization process have been calculated. During an adiabatic
(de)magnetization process temperature drops in the vicinity of a field-induced
zero-temperature quantum phase transitions. However close to field-induced
quantum phase transitions we observe a large magnetocaloric effect
The effects of meson mixing on dilepton spectra
The effect of scalar and vector meson mixing on the dilepton radiation from
hot and dense hadronic matter is estimated in different isospin channels. In
particular, we study the effect of - and mixing and
calculate the corresponding rates. Effects are found to be significant compared
to standard - and - annihilations. While the mixing in
the isoscalar channel mostly gives a contribution in the invariant mass range
between the two-pion threshold and the peak, the isovector channel
mixing induces an additional peak just below that of the .
Experimentally, the dilepton signals from - mixing seem to be more
tractable than those from - mixing.Comment: 10 pages, 9 figure
Tidal Dwarf Galaxies at Intermediate Redshifts
We present the first attempt at measuring the production rate of tidal dwarf
galaxies (TDGs) and estimating their contribution to the overall dwarf
population. Using HST/ACS deep imaging data from GOODS and GEMS surveys in
conjunction with photometric redshifts from COMBO-17 survey, we performed a
morphological analysis for a sample of merging/interacting galaxies in the
Extended Chandra Deep Field South and identified tidal dwarf candidates in the
rest-frame optical bands. We estimated a production rate about 1.4 {\times}
10^{-5} per Gyr per comoving volume for long-lived TDGs with stellar mass 3
{\times} 10^{8-9} solar mass at 0.5<z<1.1. Together with galaxy merger rates
and TDG survival rate from the literature, our results suggest that only a
marginal fraction (less than 10%) of dwarf galaxies in the local universe could
be tidally-originated. TDGs in our sample are on average bluer than their host
galaxies in the optical. Stellar population modelling of optical to
near-infrared spectral energy distributions (SEDs) for two TDGs favors a burst
component with age 400/200 Myr and stellar mass 40%/26% of the total,
indicating that a young stellar population newly formed in TDGs. This is
consistent with the episodic star formation histories found for nearby TDGs.Comment: 9 pages, 5 figures, Accepted for publication in Astrophysics & Space
Scienc
Near-field optical power transmission of dipole nano-antennas
Nano-antennas in functional plasmonic applications require high near-field optical power transmission. In this study, a model is developed to compute the near-field optical power transmission in the vicinity of a nano-antenna.
To increase the near-field optical power transmission from a nano-antenna, a tightly focused beam of light is utilized to illuminate a metallic nano-antenna. The modeling and simulation of these structures is performed using 3-D finite element method based full-wave solutions of Maxwell’s equations. Using the optical power transmission model, the interaction of a focused beam of light with plasmonic nanoantennas is investigated. In addition, the tightly focused beam of light is passed through a band-pass filter to identify the effect of various regions of the angular spectrum to the near-field radiation of a dipole nano-antenna. An extensive parametric study is performed to quantify the effects of various parameters on the transmission efficiency of dipole nano-antennas, including length, thickness, width, and the composition of the antenna, as well as the wavelength and half-beam angle of incident light. An optimal dipole nanoantenna geometry is identified based on the parameter studies in this work. In addition, the results of this study show the interaction of the optimized dipole nano-antenna with a magnetic recording medium when it is illuminated with a focused beam of light
A phase I/II study of gemcitabine during radiotherapy in children with newly diagnosed diffuse intrinsic pontine glioma
The purpose of this phase I/II, open-label, single-arm trial is to investigate the safety, tolerability, maximum tolerated dose and preliminary efficacy of the potential radiosensitizer gemcitabine, administered concomitantly to radiotherapy, in children with newly diagnosed diffuse intrinsic pontine glioma (DIPG). Six doses of weekly gemcitabine were administered intravenously, concomitantly to 6 weeks of hyperfractionated radiotherapy. Successive cohorts received increasing doses of 140, 175 and 200 mg/m2 gemcitabine, respectively, following a 3 + 3 dose-escalation schedule without expansion cohort. Dose-limiting toxicities (DLT) were monitored during treatment period. Clinical response was assessed using predefined case report forms and radiological response was assessed using the modified RANO criteria. Quality of life (QoL) was assessed using PedsQL questionnaires. Between June 2012 and December 2016, nine patients were enrolled. Treatment was well tolerated, and no DLTs were observed up to the maximum dose of 200 mg/m2. All patients experienced reduction of tumor-related symptoms. QoL tended to improve during treatment. PFS and MOS were 4.8 months (95% CI 4.0–5.7) and 8.7 months (95% CI 7.0–10.4). Classifying patients according to the recently developed DIPG survival prediction model, intermediate risk patients (n = 4),
Magnetic Interactions and Transport in (Ga,Cr)As
The magnetic, transport, and structural properties of (Ga,Cr)As are reported.
Zincblende GaCrAs was grown by low-temperature molecular beam
epitaxy (MBE). At low concentrations, x0.1, the materials exhibit unusual
magnetic properties associated with the random magnetism of the alloy. At low
temperatures the magnetization M(B) increases rapidly with increasing field due
to the alignment of ferromagnetic units (polarons or clusters) having large
dipole moments of order 10-10. A standard model of
superparamagnetism is inadequate for describing both the field and temperature
dependence of the magnetization M(B,T). In order to explain M(B) at low
temperatures we employ a distributed magnetic moment (DMM) model in which
polarons or clusters of ions have a distribution of moments. It is also found
that the magnetic susceptibility increases for decreasing temperature but
saturates below T=4 K. The inverse susceptibility follows a linear-T
Curie-Weiss law and extrapolates to a magnetic transition temperature
=10 K. In magnetotransport measurements, a room temperature resistivity
of =0.1 cm and a hole concentration of cm
are found, indicating that Cr can also act as a acceptor similar to Mn. The
resistivity increases rapidly for decreasing temperature below room
temperature, and becomes strongly insulating at low temperatures. The
conductivity follows exp[-(T/T)] over a large range of
conductivity, possible evidence of tunneling between polarons or clusters.Comment: To appear in PRB 15 Mar 200
- …
