29,244 research outputs found

    Grain boundary energies and cohesive strength as a function of geometry

    Full text link
    Cohesive laws are stress-strain curves used in finite element calculations to describe the debonding of interfaces such as grain boundaries. It would be convenient to describe grain boundary cohesive laws as a function of the parameters needed to describe the grain boundary geometry; two parameters in 2D and 5 parameters in 3D. However, we find that the cohesive law is not a smooth function of these parameters. In fact, it is discontinuous at geometries for which the two grains have repeat distances that are rational with respect to one another. Using atomistic simulations, we extract grain boundary energies and cohesive laws of grain boundary fracture in 2D with a Lennard-Jones potential for all possible geometries which can be simulated within periodic boundary conditions with a maximum box size. We introduce a model where grain boundaries are represented as high symmetry boundaries decorated by extra dislocations. Using it, we develop a functional form for the symmetric grain boundary energies, which have cusps at all high symmetry angles. We also find the asymptotic form of the fracture toughness near the discontinuities at high symmetry grain boundaries using our dislocation decoration model.Comment: 12 pages, 19 figures, changed titl

    Growth of Patterned Surfaces

    Full text link
    During epitaxial crystal growth a pattern that has initially been imprinted on a surface approximately reproduces itself after the deposition of an integer number of monolayers. Computer simulations of the one-dimensional case show that the quality of reproduction decays exponentially with a characteristic time which is linear in the activation energy of surface diffusion. We argue that this life time of a pattern is optimized, if the characteristic feature size of the pattern is larger than (D/F)1/(d+2)(D/F)^{1/(d+2)}, where DD is the surface diffusion constant, FF the deposition rate and dd the surface dimension.Comment: 4 pages, 4 figures, uses psfig; to appear in Phys. Rev. Let

    Life at high Deborah number

    Full text link
    In many biological systems, microorganisms swim through complex polymeric fluids, and usually deform the medium at a rate faster than the inverse fluid relaxation time. We address the basic properties of such life at high Deborah number analytically by considering the small-amplitude swimming of a body in an arbitrary complex fluid. Using asymptotic analysis and differential geometry, we show that for a given swimming gait, the time-averaged leading-order swimming kinematics of the body can be expressed as an integral equation on the solution to a series of simpler Newtonian problems. We then use our results to demonstrate that Purcell's scallop theorem, which states that time-reversible body motion cannot be used for locomotion in a Newtonian fluid, breaks down in polymeric fluid environments

    Late onset of Huntington's disease

    Full text link
    Twenty-five patients with late-onset Huntington's disease were studied; motor impairment appeared at age 50 years or later. The average age at onset of chorea was 57.5 years, with an average age at diagnosis of 63.1 years. Approximately 25% of persons affected by Huntington's disease exhibit late onset. A preponderance of maternal transmission was noted in late-onset Huntington's disease. The clinical features resembled those of mid-life onset Huntington's disease but progressed more slowly. Neuropathological evaluation of two cases reveal less severe neuronal atrophy than for mid-life onset disease

    Static Versus Dynamic Friction: The Role of Coherence

    Full text link
    A simple model for solid friction is analyzed. It is based on tangential springs representing interlocked asperities of the surfaces in contact. Each spring is given a maximal strain according to a probability distribution. At their maximal strain the springs break irreversibly. Initially all springs are assumed to have zero strain, because at static contact local elastic stresses are expected to relax. Relative tangential motion of the two solids leads to a loss of coherence of the initial state: The springs get out of phase due to differences in their sizes. This mechanism alone is shown to lead to a difference between static and dynamic friction forces already. We find that in this case the ratio of the static and dynamic coefficients decreases with increasing relative width of the probability distribution, and has a lower bound of 1 and an upper bound of 2.Comment: 10 pages, 2 figures, revtex

    The optimal cloning of quantum coherent states is non-Gaussian

    Full text link
    We consider the optimal cloning of quantum coherent states with single-clone and joint fidelity as figures of merit. Both optimal fidelities are attained for phase space translation covariant cloners. Remarkably, the joint fidelity is maximized by a Gaussian cloner, whereas the single-clone fidelity can be enhanced by non-Gaussian operations: a symmetric non-Gaussian 1-to-2 cloner can achieve a single-clone fidelity of approximately 0.6826, perceivably higher than the optimal fidelity of 2/3 in a Gaussian setting. This optimal cloner can be realized by means of an optical parametric amplifier supplemented with a particular source of non-Gaussian bimodal states. Finally, we show that the single-clone fidelity of the optimal 1-to-infinity cloner, corresponding to a measure-and-prepare scheme, cannot exceed 1/2. This value is achieved by a Gaussian scheme and cannot be surpassed even with supplemental bound entangled states.Comment: 4 pages, 2 figures, revtex; changed title, extended list of authors, included optical implementation of optimal clone

    Propulsion in a viscoelastic fluid

    Full text link
    Flagella beating in complex fluids are significantly influenced by viscoelastic stresses. Relevant examples include the ciliary transport of respiratory airway mucus and the motion of spermatozoa in the mucus-filled female reproductive tract. We consider the simplest model of such propulsion and transport in a complex fluid, a waving sheet of small amplitude free to move in a polymeric fluid with a single relaxation time. We show that, compared to self-propulsion in a Newtonian fluid occurring at a velocity U_N, the sheet swims (or transports fluid) with velocity U / U_N = [1+De^2 (eta_s)/(eta) ]/[1+De^2], where eta_s is the viscosity of the Newtonian solvent, eta is the zero-shear-rate viscosity of the polymeric fluid, and De is the Deborah number for the wave motion, product of the wave frequency by the fluid relaxation time. Similar expressions are derived for the rate of work of the sheet and the mechanical efficiency of the motion. These results are shown to be independent of the particular nonlinear constitutive equations chosen for the fluid, and are valid for both waves of tangential and normal motion. The generalization to more than one relaxation time is also provided. In stark contrast with the Newtonian case, these calculations suggest that transport and locomotion in a non-Newtonian fluid can be conveniently tuned without having to modify the waving gait of the sheet but instead by passively modulating the material properties of the liquid.Comment: 21 pages, 1 figur
    • …
    corecore