1,086 research outputs found
Quantum Weakly Nondeterministic Communication Complexity
We study the weakest model of quantum nondeterminism in which a classical
proof has to be checked with probability one by a quantum protocol. We show the
first separation between classical nondeterministic communication complexity
and this model of quantum nondeterministic communication complexity for a total
function. This separation is quadratic.Comment: 12 pages. v3: minor correction
Can Education Reduce Political Polarization?: Fostering Open-Minded Political Engagement during the Legislative Semester
Background: In the United States, elected leaders and the general public have become more politically polarized during the past several decades, making bipartisan compromise difficult. Political scientists and educational scholars have argued that generating productive political cooperation requires preparing members of democratic societies to productively negotiate their political disagreements. Numerous prior studies on civic learning have focused on fostering youth political engagement, but little research has examined how educators can support both political engagement and political open-mindedness.
Purpose: The study described in this paper explores how students’ experiences in a unique high school government course may help to foster their open-minded political engagement (OMPE) which we define as an individual’s propensity to explore and participate in political affairs while maintaining a willingness to adjust one’s political views.
Research Design: Using quantitative and qualitative methods, we examined the development of adolescents’ OMPE during their participation in high school government courses at three schools. Whereas participants at Standard High (N=87) completed a traditional government course, students at Green High (N=224) and Gomez High (N=94) were enrolled in the Legislative Semester course, an extended political simulation that required students to research, discuss, debate, and mock-vote on controversial public issues. At each research site, we gathered data through student surveys, teacher and student interviews, and classroom observations during the fall 2014-15 semester. We analyzed survey data using principal component analysis, t-tests, and OLS regression, and we conducted constant comparative analysis with our qualitative data.
Findings: Students in the LS program became more politically engaged and open-minded than students in the traditional government course. Whereas studying and exploring various political issues was especially helpful for the development of political engagement, considering diverse political perspectives in an open classroom environment was helpful for the development of political open-mindedness. However, if students in the LS were encouraged to be partisan, they were less likely to develop greater political open-mindedness.
Conclusions: Repeated opportunities to examine diverse political ideas with peers can foster the development of open-minded political engagement. Educators can support such exchanges not only through structuring substantive sharing of diverse political perspectives but also through creating emotionally “safe” classroom environments, encouraging the expression of minority viewpoints, and de-emphasizing partisan uniformity. Encouraging careful listening – rather than polite hearing – may be central for the development of political open-mindedness
The emerging spectrum of cardiopulmonary pathology of the Coronavirus disease 2019 (COVID-19): Report of three autopsies from Houston, Texas and review of autopsy findings from other United States cities
This paper collates the pathological findings from initial published autopsy reports on 23 patients with coronavirus disease 2019 (COVID-19) from 5 centers in the United States of America, including 3 cases from Houston, Texas. Findings confirm that COVID-19 is a systemic disease with major involvement of the lungs and heart. Acute COVID-19 pneumonia has features of a distinctive acute interstitial pneumonia with a diffuse alveolar damage component, coupled with microvascular involvement with intra- and extravascular fibrin deposition and intravascular trapping of neutrophils, and, frequently, with formation of microthombi in arterioles. Major pulmonary thromboemboli with pulmonary infarcts and/or hemorrhage occurred in 5 of the 23 patients. Two of the Houston cases had interstitial pneumonia with diffuse alveolar damage pattern. One of the Houston cases had multiple bilateral segmental pulmonary thromboemboli with infarcts and hemorrhages coupled with, in nonhemorrhagic areas, a distinctive interstitial lymphocytic pneumonitis with intra-alveolar fibrin deposits and no hyaline membranes, possibly representing a transition form to acute fibrinous and organizing pneumonia. Multifocal acute injury of cardiac myocytes was frequently observed. Lymphocytic myocarditis was reported in 1 case. In addition to major pulmonary pathology, the 3 Houston cases had evidence of lymphocytic pericarditis, multifocal acute injury of cardiomyocytes without inflammatory cellular infiltrates, depletion of splenic white pulp, focal hepatocellular degeneration and rare glomerular capillary thrombosis. Each had evidence of chronic cardiac disease: hypertensive left ventricular hypertrophy (420 g heart), dilated cardiomyopathy (1070 g heart), and hypertrophic cardiomyopathy (670 g heart). All 3 subjects were obese (BMIs of 33.8, 51.65, and 35.2 Kg/m2). Overall, the autopsy findings support the concept that the pathogenesis of severe COVID-19 disease involves direct viral-induced injury of multiple organs, including heart and lungs, coupled with the consequences of a procoagulant state with coagulopathy
Controls of primary production in two phytoplankton blooms in the Antarctic Circumpolar Current
The Antarctic Circumpolar Current has a high potential for primary production and carbon sequestration through the biological pump. In the current study, two large-scale blooms observed in 2012 during a cruise with R.V. Polarstern were investigated with respect to phytoplankton standing stocks, primary productivity and nutrient budgets. While net primary productivity was similar in both blooms, chlorophyll a –specific photosynthesis was more efficient in the bloom closer to the island of South Georgia (39 °W, 50 °S) compared to the open ocean bloom further east (12 °W, 51 °S). We did not find evidence for light being the driver of bloom dynamics as chlorophyll standing stocks up to 165 mg m-2 developed despite mixed layers as deep as 90 m. Since the two bloom regions differ in their distance to shelf areas, potential sources of iron vary. Nutrient (nitrate, phosphate, silicate) deficits were similar in both areas despite different bloom ages, but their ratios indicated more pronounced iron limitation at 12 °W compared to 39 °W. While primarily the supply of iron and not the availability of light seemed to control onset and duration of the blooms, higher grazing pressure could have exerted a stronger control toward the declining phase of the blooms
Radiation-induced oscillatory magnetoresistance as a sensitive probe of the zero-field spin splitting in high mobility GaAs/AlGaAs devices
We suggest an approach for characterizing the zero-field spin splitting of
high mobility two-dimensional electron systems, when beats are not readily
observable in the Shubnikov-de Haas effect. The zero-field spin splitting and
the effective magnetic field seen in the reference frame of the electron is
evaluated from a quantitative study of beats observed in radiation-induced
magnetoresistance oscillations.Comment: 4 pages, 4 color figure
Proton-proton bremsstrahlung below and above pion-threshold: the influence of the -isobar
The proton-proton bremsstrahlung is investigated within a coupled-channel
model with the degree of freedom. The model is consistent with the
scattering up to 1 GeV and the vertex determined in the
study of pion photoproduction reactions. It is found that the
excitation can significantly improve the agreements with the at MeV. Predictions at and MeV are
presented for future experimental tests.Comment: 26 pages Revtex, 12 figures are available from the authors upon
request ([email protected]
Intersubband spin-density excitations in quantum wells with Rashba spin splitting
In inversion-asymmetric semiconductors, spin-orbit coupling induces a
k-dependent spin splitting of valence and conduction bands, which is a
well-known cause for spin decoherence in bulk and heterostructures.
Manipulating nonequilibrium spin coherence in device applications thus requires
understanding how valence and conduction band spin splitting affects carrier
spin dynamics. This paper studies the relevance of this decoherence mechanism
for collective intersubband spin-density excitations (SDEs) in quantum wells. A
density-functional formalism for the linear spin-density matrix response is
presented that describes SDEs in the conduction band of quantum wells with
subbands that may be non-parabolic and spin-split due to bulk or structural
inversion asymmetry (Rashba effect). As an example, we consider a 40 nm
GaAs/AlGaAs quantum well, including Rashba spin splitting of the conduction
subbands. We find a coupling and wavevector-dependent splitting of the
longitudinal and transverse SDEs. However, decoherence of the SDEs is not
determined by subband spin splitting, due to collective effects arising from
dynamical exchange and correlation.Comment: 10 pages, 4 figure
De Sitter and Schwarzschild-De Sitter According to Schwarzschild and De Sitter
When de Sitter first introduced his celebrated spacetime, he claimed,
following Schwarzschild, that its spatial sections have the topology of the
real projective space RP^3 (that is, the topology of the group manifold SO(3))
rather than, as is almost universally assumed today, that of the sphere S^3.
(In modern language, Schwarzschild was disturbed by the non-local correlations
enforced by S^3 geometry.) Thus, what we today call "de Sitter space" would not
have been accepted as such by de Sitter. There is no real basis within
classical cosmology for preferring S^3 to RP^3, but the general feeling appears
to be that the distinction is in any case of little importance. We wish to
argue that, in the light of current concerns about the nature of de Sitter
space, this is a mistake. In particular, we argue that the difference between
"dS(S^3)" and "dS(RP^3)" may be very important in attacking the problem of
understanding horizon entropies. In the approach to de Sitter entropy via
Schwarzschild-de Sitter spacetime, we find that the apparently trivial
difference between RP^3 and S^3 actually leads to very different perspectives
on this major question of quantum cosmology.Comment: 26 pages, 8 figures, typos fixed, references added, equation numbers
finally fixed, JHEP versio
- …