5 research outputs found

    The cytokine tumor necrosis factor-like weak inducer of apoptosis and its receptor fibroblast growth factor-inducible 14 have a neuroprotective effect in the central nervous system

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cerebral cortical neurons have a high vulnerability to the harmful effects of hypoxia. However, the brain has the ability to detect and accommodate to hypoxic conditions. This phenomenon, known as preconditioning, is a natural adaptive process highly preserved among species whereby exposure to sub-lethal hypoxia promotes the acquisition of tolerance to a subsequent lethal hypoxic injury. The cytokine tumor necrosis factor-like weak inducer of apoptosis (TWEAK) and its receptor fibroblast growth factor-inducible 14 (Fn14) are found in neurons and their expression is induced by exposure to sub-lethal hypoxia. Accordingly, in this work we tested the hypothesis that the interaction between TWEAK and Fn14 induces tolerance to lethal hypoxic and ischemic conditions.</p> <p>Methods</p> <p>Here we used <it>in vitro </it>and <it>in vivo </it>models of hypoxic and ischemic preconditioning, an animal model of transient middle cerebral artery occlusion and mice and neurons genetically deficient in TWEAK, Fn14, or tumor necrosis factor alpha (TNF-α) to investigate whether treatment with recombinant TWEAK or an increase in the expression of endogenous TWEAK renders neurons tolerant to lethal hypoxia. We used enzyme-linked immunosorbent assay to study the effect of TWEAK on the expression of neuronal TNF-α, Western blot analysis to investigate whether the effect of TWEAK was mediated by activation of mitogen-activated protein kinases and immunohistochemical techniques and quantitative real-time polymerase chain reaction analysis to study the effect of TWEAK on apoptotic cell death.</p> <p>Results</p> <p>We found that either treatment with recombinant TWEAK or an increase in the expression of TWEAK and Fn14 induce hypoxic and ischemic tolerance <it>in vivo </it>and <it>in vitro</it>. This protective effect is mediated by neuronal TNF-α and activation of the extracellular signal-regulated kinases 1 and 2 pathway via phosphorylation and inactivation of the B-cell lymphoma 2-associated death promoter protein.</p> <p>Conclusions</p> <p>Our work indicate that the interaction between TWEAK and Fn14 triggers the activation of a cell signaling pathway that results in the induction of tolerance to lethal hypoxia and ischemia. These data indicate that TWEAK may be a potential therapeutic strategy to protect the brain from the devastating effects of an ischemic injury.</p

    Tissue-type plasminogen activator is a neuroprotectant in the mouse hippocampus

    No full text
    The best-known function of the serine protease tissue-type plasminogen activator (tPA) is as a thrombolytic enzyme. However, it is also found in structures of the brain that are highly vulnerable to hypoxia-induced cell death, where its association with neuronal survival is poorly understood. Here, we have demonstrated that hippocampal areas of the mouse brain lacking tPA activity are more vulnerable to neuronal death following an ischemic insult. We found that sublethal hypoxia, which elicits tolerance to subsequent lethal hypoxic/ischemic injury in a natural process known as ischemic preconditioning (IPC), induced a rapid release of neuronal tPA. Treatment of hippocampal neurons with tPA induced tolerance against a lethal hypoxic insult applied either immediately following insult (early IPC) or 24 hours later (delayed IPC). tPA-induced early IPC was independent of the proteolytic activity of tPA and required the engagement of a member of the LDL receptor family. In contrast, tPA-induced delayed IPC required the proteolytic activity of tPA and was mediated by plasmin, the NMDA receptor, and PKB phosphorylation. We also found that IPC in vivo increased tPA activity in the cornu ammonis area 1 (CA1) layer and Akt phosphorylation in the hippocampus, as well as ischemic tolerance in wild-type but not tPA- or plasminogen-deficient mice. These data show that tPA can act as an endogenous neuroprotectant in the murine hippocampus
    corecore