652 research outputs found
The thermodynamics of computational copying in biochemical systems
Living cells use readout molecules to record the state of receptor proteins,
similar to measurements or copies in typical computational devices. But is this
analogy rigorous? Can cells be optimally efficient, and if not, why? We show
that, as in computation, a canonical biochemical readout network generates
correlations; extracting no work from these correlations sets a lower bound on
dissipation. For general input, the biochemical network cannot reach this
bound, even with arbitrarily slow reactions or weak thermodynamic driving. It
faces an accuracy-dissipation trade-off that is qualitatively distinct from and
worse than implied by the bound, and more complex steady-state copy processes
cannot perform better. Nonetheless, the cost remains close to the thermodynamic
bound unless accuracy is extremely high. Additionally, we show that
biomolecular reactions could be used in thermodynamically optimal devices under
exogenous manipulation of chemical fuels, suggesting an experimental system for
testing computational thermodynamics.Comment: Accepted versio
Recommended from our members
Implementation of polarization diversity pulse-pair technique using airborne W-band radar
This work describes the implementation of polarization diversity on the National Research Council Canada W-band Doppler radar and presents the first-ever airborne Doppler measurements derived via polarization diversity pulse-pair processing. The polarization diversity pulse-pair measurements are interleaved with standard pulse-pair measurements with staggered pulse repetition frequency, this allows a better understanding of the strengths and drawbacks of polarization diversity, a methodology that has been recently proposed for wind-focused Doppler radar space missions. Polarization diversity has the clear advantage of making possible Doppler observations of very fast decorrelating media (as expected when deploying Doppler radars on fast-moving satellites) and of widening the Nyquist interval, thus enabling the observation of very high Doppler velocities (up to more than 100 m s−1 in the present work). Crosstalk between the two polarizations, mainly caused by depolarization at backscattering, deteriorated the quality of the observations by introducing ghost echoes in the power signals and by increasing the noise level in the Doppler measurements. In the different cases analyzed during the field campaigns, the regions affected by crosstalk were generally associated with highly depolarized surface returns and depolarization of backscatter from hydrometeors located at short ranges from the aircraft. The variance of the Doppler velocity estimates can be well predicted from theory and were also estimated directly from the observed correlation between the H-polarized and V-polarized successive pulses. The study represents a key milestone towards the implementation of polarization diversity in Doppler space-borne radars
Multiplexing Biochemical Signals
In this paper we show that living cells can multiplex biochemical signals,
i.e. transmit multiple signals through the same signaling pathway
simultaneously, and yet respond to them very specifically. We demonstrate how
two binary input signals can be encoded in the concentration of a common
signaling protein, which is then decoded such that each of the two output
signals provides reliable information about one corresponding input. Under
biologically relevant conditions the network can reach the maximum amount of
information that can be transmitted, which is 2 bits.Comment: 4 pages, 4 figure
Sampling rare switching events in biochemical networks
Bistable biochemical switches are ubiquitous in gene regulatory networks and
signal transduction pathways. Their switching dynamics, however, are difficult
to study directly in experiments or conventional computer simulations, because
switching events are rapid, yet infrequent. We present a simulation technique
that makes it possible to predict the rate and mechanism of flipping of
biochemical switches. The method uses a series of interfaces in phase space
between the two stable steady states of the switch to generate transition
trajectories in a ratchet-like manner. We demonstrate its use by calculating
the spontaneous flipping rate of a symmetric model of a genetic switch
consisting of two mutually repressing genes. The rate constant can be obtained
orders of magnitude more efficiently than using brute-force simulations. For
this model switch, we show that the switching mechanism, and consequently the
switching rate, depends crucially on whether the binding of one regulatory
protein to the DNA excludes the binding of the other one. Our technique could
also be used to study rare events and non-equilibrium processes in soft
condensed matter systems.Comment: 9 pages, 6 figures, last page contains supplementary informatio
Implementation of polarization diversity pulse-pair technique using airborne W-band radar
This work describes the implementation of polarization diversity on the National Research Council Canada W-band Doppler radar and presents the first-ever airborne Doppler measurements derived via polarization diversity pulse-pair processing. The polarization diversity pulse-pair measurements are interleaved with standard pulse-pair measurements with staggered pulse repetition frequency, this allows a better understanding of the strengths and drawbacks of polarization diversity, a methodology that has been recently proposed for wind-focused Doppler radar space missions. Polarization diversity has the clear advantage of making possible Doppler observations of very fast decorrelating media (as expected when deploying Doppler radars on fast-moving satellites) and of widening the Nyquist interval, thus enabling the observation of very high Doppler velocities (up to more than 100m -1 in the present work). Crosstalk between the two polarizations, mainly caused by depolarization at backscattering, deteriorated the quality of the observations by introducing ghost echoes in the power signals and by increasing the noise level in the Doppler measurements. In the different cases analyzed during the field campaigns, the regions affected by crosstalk were generally associated with highly depolarized surface returns and depolarization of backscatter from hydrometeors located at short ranges from the aircraft. The variance of the Doppler velocity estimates can be well predicted from theory and were also estimated directly from the observed correlation between the H-polarized and inline-formula V-polarized successive pulses. The study represents a key milestone towards the implementation of polarization diversity in Doppler space-borne radars
Finding the center reliably: robust patterns of developmental gene expression
We investigate a mechanism for the robust identification of the center of a
developing biological system. We assume the existence of two morphogen
gradients, an activator emanating from the anterior, and a co-repressor from
the posterior. The co-repressor inhibits the action of the activator in
switching on target genes. We apply this system to Drosophila embryos, where we
predict the existence of a hitherto undetected posterior co-repressor. Using
mathematical modelling, we show that a symmetric activator-co-repressor model
can quantitatively explain the precise mid-embryo expression boundary of the
hunchback gene, and the scaling of this pattern with embryo size.Comment: 4 pages, 3 figure
A Steepest Feasible Direction Method for Linear Programming. Derivation and Embedding In the Simplex Method
A feasible direction method for linear programming has been proposed. The method is embedded in the framework of the simplex method, even though it works with non-edge feasible directions. The direction used is the steepest in the space of all variables or an approximation thereof, and it is found by solving a strictly convex quadratic program in the space of the nonbasic variables. Further, this program guarantees the feasibility of the direction even in the case of degeneracy. To remain within the simplex framework, the direction is represented by an auxiliary, or external, nonbasic column, which is a nonnegative linear combination of original nonbasic columns. We have made an experimental evaluation of the suggested method on both nondegenerate and highly degenerate problem instances. The overall results are very promising for continued research along this line, especially concerning various computational strategies that can be applied when the method is implemented. (original abstract
Triple frequency radar retrieval of microphysical properties of snow
An algorithm based on triple-frequency (X, Ka, W) radar measurements that retrieves the size, water content and degree of riming of ice clouds is
presented. This study exploits the potential of multi-frequency radar measurements to provide information on bulk snow density that should underpin
better estimates of the snow characteristic size and content within the radar volume. The algorithm is based on Bayes' rule with riming
parameterised by the “fill-in” model. The radar reflectivities are simulated with a range of scattering models corresponding to realistic
snowflake shapes. The algorithm is tested on multi-frequency radar data collected during the ESA-funded Radar Snow Experiment For Future Precipitation Mission. During this campaign,
in situ microphysical probes were mounted on the same aeroplane as the radars. This nearly perfectly co-located dataset of the remote and in situ
measurements gives an opportunity to derive a combined multi-instrument estimate of snow microphysical properties that is used for a rigorous
validation of the radar retrieval. Results suggest that the triple-frequency retrieval performs well in estimating ice water content (IWC) and
mean mass-weighted diameters obtaining root-mean-square errors of 0.13 and 0.15, respectively, for log 10IWC and
log 10Dm. The retrieval of the degree of riming is more challenging, and only the algorithm that uses Doppler information obtains
results that are highly correlated with the in situ data.</p
- …