9 research outputs found

    Dynamical density functional theory for orientable colloids including inertia and hydrodynamic interactions

    Get PDF
    Over the last few decades, classical density-functional theory (DFT) and its dynamic extensions (DDFTs) have become powerful tools in the study of colloidal fluids. Recently, previous DDFTs for spherically-symmetric particles have been generalised to take into account both inertia and hydrodynamic interactions, two effects which strongly influence non-equilibrium properties. The present work further generalises this framework to systems of anisotropic particles. Starting from the Liouville equation and utilising Zwanzig's projection-operator techniques, we derive the kinetic equation for the Brownian particle distribution function, and by averaging over all but one particle, a DDFT equation is obtained. Whilst this equation has some similarities with DDFTs for spherically-symmetric colloids, it involves a translational-rotational coupling which affects the diffusivity of the (asymmetric) particles. We further show that, in the overdamped (high friction) limit, the DDFT is considerably simplified and is in agreement with a previous DDFT for colloids with arbitrary shape particles.Comment: dynamical density functional theory ; colloidal fluids ; arbitrary-shape particles ; orientable colloid

    Thermodynamics of computational copying in biochemical systems

    Get PDF
    Living cells use readout molecules to record the state of receptor proteins, similar to measurements or copies in typical computational devices. But is this analogy rigorous? Can cells be optimally efficient, and if not, why? We show that, as in computation, a canonical biochemical readout network generates correlations; extracting no work from these correlations sets a lower bound on dissipation. For general input, the biochemical network cannot reach this bound, even with arbitrarily slow reactions or weak thermodynamic driving. It faces an accuracy-dissipation trade-off that is qualitatively distinct from and worse than implied by the bound, and more complex steady-state copy processes cannot perform better. Nonetheless, the cost remains close to the thermodynamic bound unless accuracy is extremely high. Additionally, we show that biomolecular reactions could be used in thermodynamically optimal devices under exogenous manipulation of chemical fuels, suggesting an experimental system for testing computational thermodynamics

    Non-equilibrium correlations in minimal dynamical models of polymer copying

    No full text
    Living systems produce "persistent" copies of information-carrying polymers, in which template and copy sequences remain correlated after physically decoupling. We identify a general measure of the thermodynamic efficiency with which these non-equilibrium states are created, and analyze the accuracy and efficiency of a family of dynamical models that produce persistent copies. For the weakest chemical driving, when polymer growth occurs in equilibrium, both the copy accuracy and, more surprisingly, the efficiency vanish. At higher driving strengths, accuracy and efficiency both increase, with efficiency showing one or more peaks at moderate driving. Correlations generated within the copy sequence, as well as between template and copy, store additional free energy in the copied polymer and limit the single-site accuracy for a given chemical work input. Our results provide insight in the design of natural self-replicating systems and can aid the design of synthetic replicators

    A biochemical machine for the interconversion of mutual information and work

    No full text
    We propose a physically-realisable biochemical device that is coupled to a biochemical reservoir of mutual information, fuel molecules and a chemical bath. Mutual information allows work to be done on the bath even when the fuel molecules appear to be in equilibrium; alternatively, mutual information can be created by driving from the fuel or the bath. The system exhibits diverse behaviour, including a regime in which the information, despite increasing during the reaction, enhances the extracted work. We further demonstrate that a modified device can function without the need for external manipulation, eliminating the need for a complex and potentially costly control
    corecore