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Living cells use readout molecules to record the state of receptor proteins, similar to measurements or
copies in typical computational devices. But is this analogy rigorous? Can cells be optimally efficient, and
if not, why? We show that, as in computation, a canonical biochemical readout network generates
correlations; extracting no work from these correlations sets a lower bound on dissipation. For general
input, the biochemical network cannot reach this bound, even with arbitrarily slow reactions or weak
thermodynamic driving. It faces an accuracy-dissipation trade-off that is qualitatively distinct from and
worse than implied by the bound, and more complex steady-state copy processes cannot perform better.
Nonetheless, the cost remains close to the thermodynamic bound unless accuracy is extremely high.
Additionally, we show that biomolecular reactions could be used in thermodynamically optimal devices
under exogenous manipulation of chemical fuels, suggesting an experimental system for testing
computational thermodynamics.
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I. INTRODUCTION

If it were possible to perform many measurements using
a single bit of memory without putting in work, Maxwell’s
demon could use the information gained to violate the
second law of thermodynamics and extract net work from
an equilibrium system. Landauer’s insight that computa-
tional processes require a physical instantiation and there-
fore have thermodynamic consequences [1–3] is key to
exorcising the demon, and the survival of the second law
has been demonstrated in a range of physical models [2–4].
If, unlike Maxwell’s thought experiment, the correlations
generated by a measurement or copy are not used to
perform work, the cycle increases the entropy of the
universe (by at least k ln 2 if the measurement is binary,
perfectly accurate, and has a 50=50 outcome) [2,4,5].
Landauer and others have provided specific physical
implementations of binary devices along with protocols
that achieve the thermodynamic bound for measurement
cycles [2,3] or memory erasure protocols [1,6–9].
Examples include magnetic systems [1,2,9] or single
particles in pistons [4,5,10–13].
Do biomolecules perform measurement and copying

within this computational paradigm? Many biological
processes involve creating long-lived molecular copies of
other molecules [2,14,15]. Perhaps the most tantalizing

analogy is in the cellular sensing of external ligand
concentrations. Following the seminal work of Berg and
Purcell [16], it has been shown that cells can reduce their
sensing error by averaging a noisy receptor signal over time
[17–24]. Recent studies claim that cells implement time
integration by dissipatively copying receptor states into the
chemical modification states of readout molecules [24–26].
Other authors have highlighted the necessity of dissipation
in adaption [27–29] and kinetic proofreading [30,31].
While it has been noted that there is a connection

between the dissipation present in cellular copying and
the thermodynamics of computation [24–26], the nature of
the connection remains nebulous. How do cellular proto-
cols compare to the canonical copy protocols typically
considered in the computational literature? Can cellular
systems reach the fundamental thermodynamic limit on the
accuracy and energetic cost of a measurement? If not, what
is the underlying reason for the additional dissipation? Is it
due to the nature of the biomolecular reactions, or due to
the design of the signaling network? And if cellular systems
cannot reach the fundamental limit, how does the trade-off
between energy and precision differ from the ideal case? To
answer all of these questions, it is necessary to construct a
rigorous mapping between cellular processes and computa-
tional copying. Understanding the connection between the
thermodynamics of computation and the thermodynamics
of biological processes [24,25,27,30,32–36] at a mecha-
nistic level would enable translating quantitative, not just
qualitative, results from the literature on computation.
We rigorously map a canonical push-pull signaling motif

to a computational copy device at the level of the master
equation. We thereby identify a lower bound on dissipation
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that arises from the failure to exploit correlations generated
between receptors and readouts (rather than the widely
discussed costs of “erasure” [1,6–9,25]). Our mapping
demonstrates that the push-pull network cannot converge
on this fundamental limit for a general input signal, regard-
less of its parameters, and we prove that more complex
biochemical networks involving multiple steps or parallel
pathways cannot perform any better. Remarkably, however,
cellular systems can operate close to the lower bound at
moderate-to-high accuracy, even at a high rate of copying.
Further, cellular networks are naturally adaptive, dissipating
less when the sampling challenge is reduced. Finally, we
show that an artificial copy device based on biochemical
reactions can achieve the thermodynamic bound with
exogenous manipulation of fuel concentrations, providing
an alternative platform for investigating the thermodynam-
ics of computation.

II. PUSH-PULL SYSTEM

To explore biochemical copying, we consider bifunc-
tional kinase systems, which are common in bacteria [37].
The bifunctional kinase tends to either phosphorylate or
dephosphorylate a readout x, depending on the ligand-
binding state of the receptor to which the kinase is coupled
(Fig. 1). If the receptor R is bound to ligand L, then the
bifunctional kinase acts as a kinase, catalyzing phospho-
rylation and dephosphorylation reactions that are both
coupled to hydrolysis of adenosine triphosphate (ATP).
If the receptor is not bound to the ligand, then the

bifunctional kinase acts as a phosphatase, catalyzing
phosphorylation and dephosphorylation reactions that are
uncoupled from ATP hydrolysis. Such a system can be
described by the following reactions:

Rþ L⇌RL;

RLþ xþ ATP⇌RLþ x� þ ADP;

Rþ x�⇌Rþ xþ P; ð1Þ
where the kinase or phosphatase activity is coarse grained
into the ligand-binding state of the receptor and ADP and P
stand for adenosine diphosphate and inorganic phosphate,
respectively. Here, x and x� represent unphosphorylated
and phosphorylated readout states, respectively.
For simplicity, we take the concentration [L] to be

constant, and assume the system is maintained in a non-
equilibrium steady state: [ADP], [ATP], and [P] are fixed.
We treat phosphorylation and dephosphorylation as instan-
taneous second-order reactions. Thus,

R ⇌
k1½L�

k2
RL; RLþ x⇌

k3

k4
RLþ x�; Rþ x�⇌

k6

k5
Rþ x:

ð2Þ
The master equation for this system, and the chemical
kinetics approximation, are provided in Discussion 1 in the
Supplemental Material [38]. We emphasize that the reac-
tions within each equation are the microscopic reverses of
each other, while the reactions of the second and third
equations correspond to distinct reaction paths. This yields
a thermodynamically consistent model.
Qualitatively, this circuit performs copies (or measure-

ments) in the following way. As spontaneous phospho-
rylation and dephosphorylation in the absence of the
bifunctional kinase occur at a low rate which we take to
be zero, the two chemical modification states of the readout
are analogous to two stable states of a memory bit separated
by a large barrier, as widely considered in the computa-
tional literature [2,3,14]. There are, however, two separate
paths between the two wells, via exchange of phosphate
with ATP and via exchange of phosphate with the cytosol.
Moreover, the ATP-independent (de)phosphorylation reac-
tion has a high yield of x in equilibrium, whereas the ATP-
coupled reaction has an intrinsically high yield of x�. The
resultant extended free-energy landscape for a single read-
out that explicitly considers ATP turnover is illustrated in
Fig. 1(b). The presence of RL lowers the barrier between
pairs of states connected by ATP turnover, whereas the
presence of R lowers the barrier between states not
connected by ATP turnover. In this way the receptor’s
binding state effectively restricts the free-energy landscape
to favor either x or x�, which can then be thought of as
copying the state of the receptor into the chemical modi-
fication state of the readout [24,25]. In the next section, we
make this analogy concrete, allowing a quantitative analy-
sis of biochemical copying.

(a) (b)

ATP ADP P

FIG. 1. A canonical signaling network. (a) The signaling
network utilizes a receptor that acts as a bifunctional kinase or
phosphatase: when bound to a ligand, it catalyzes the activation
of the downstream readout; when unbound, it catalyzes the
deactivation of the downstream readout. Free-energy dissipation
due to the use of fuel, coarse grained from this representation,
drives the reactions. (b) Schematic free-energy landscape of a
single readout molecule in the biochemical network. We plot the
free energy G as a function of the number of ATP molecules that
are converted into ADP molecules, for the two states x and x�.
Thermodynamically favorable transitions are shown with solid
arrows, and unfavorable transitions with dashed arrows. The
presence of catalysts R and RLmakes these transitions faster, and
thereby push the system towards x or x�, but the overall
thermodynamic drive is fixed for both reactions.
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Since each readout molecule provides a stable memory of
the receptor state, the readout molecules collectively provide
informationon the state of the receptor in the recent past. This
enables time integration of the receptor signal and, hence,
enhanced accuracy of concentration estimates [16,24–26].
We are not concerned, however, with the precision of sensing
a constant concentration [16,17,24–26,39], nor with the
“learning rate” between the ligand concentration and the
network, which is important when changes in external
concentrations are more rapid [40–42]. Rather, we are
interested in whether the readout reaction can be rigorously
described in terms of a copy process, and if so, how this
cellular protocol compares to optimal quasistatic computa-
tional protocols involving the manipulation of energy land-
scapes that are common in the literature [2,3,14].

III. RESULTS

A. Mapping the biochemical network to a copy process

Let us consider the dynamics necessary for the bio-
chemical network to be described rigorously as a stochastic
copying system, in which randomly selected data bits
(receptors) are copied into randomly selected memory bits
(readouts) at certain rates. To make such a mapping, each
readout molecule should perform a copy of any one ligand-
bound receptor at a rate kcopyRL , and any one unbound
receptor at a rate kcopyR . These copies are performed with
accuracies sRL and sR, respectively, and the result of the
copy should be independent of the prior state of the
readout. Thus, a copy of RL (R) returns x� (x) with
probability sRL (sR). Note that the state of the readout
can be identical both before and after the copy, just as bits
overwritten with new data may have the same value as
before; transitions and copies are not equivalent. Indeed, if
the network is to be described as a copy process, then
readouts in state x should be converted into readouts in
state x� at a rate

σx→x� ¼ ðNRLk
copy
RL sRL þ NRk

copy
R ð1 − sRÞÞNx; ð3Þ

and x� should be converted into x at a rate

σx�→x ¼ ðNRLk
copy
RL ð1 − sRLÞ þ NRk

copy
R sRÞNx� : ð4Þ

Here, NR and NRL are numbers of receptors, and Nx and
Nx� the numbers of readouts, in each state. By definition,
copies are made at a rate ðkcopyRL NRL þ kRcopyNRÞNxT , with
NxT the total number of readouts.
Returning to our actual biochemical network, Eq. (2)

specifies the dynamics of x and x�. The transitions occur
with rates

σx→x� ¼ ðk3NRL þ k5NRÞ½x�;
σx�→x ¼ ðk4NRL þ k6NRÞ½x��: ð5Þ

Comparing Eqs. (3)–(5), we see that the biochemical
network and stochastic copy process are equivalent at
the level of transition rates, which specify the master
equation, if we perform the mapping

kcopyRL ¼ ðk3 þ k4Þ=V; kcopyR ¼ ðk5 þ k6Þ=V; ð6Þ
in which V is the volume of the system and the copy
accuracies are

sRL ¼ k3=ðk3 þ k4Þ; sR ¼ k6=ðk5 þ k6Þ: ð7Þ
Thus, the average copy rate is

_ncopy ¼ ½xT �fðk3 þ k4ÞhNRLi þ ðk6 þ k5ÞhNRig; ð8Þ
in which square brackets indicate a concentration within the
volume V. The biochemical network can, therefore, be
directly mapped to a stochastic copying process.

B. Energetic cost per copy cycle

In the nonequilibrium steady state, the average dissipa-
tion rate of chemical free energy ( _wchem) is

_wchem ¼ − _nfluxðΔμ1 þ Δμ2Þ ¼ _nfluxkT ln

�
k3k6
k4k5

�
; ð9Þ

where _nflux is the average current of readout molecules
around the phosphorylation-dephospohorylation loop;
Δμ1 ¼ μADP − μATP and Δμ2 ¼ μP. The sum −ðΔμ1 þ
Δμ2Þ is the free energy of ATP hydrolysis, which is
dissipated when a readout goes around this cycle once.
To proceed, we introduce the following averages:

p ¼ hNRLi
NRT

¼ k1½L�
k2 þ k1½L�

; f ¼ h½x��i
½xT �

; ð10Þ

with NRT
¼ NRL þ NR the total number of receptors. In the

mean-field limit, _nflux follows from Eq. (2) as

_nflux ¼ hk3NRL½x� − k4NRL½x��i
¼ fk3ð1 − fÞ − k4fgp½xT �NRT

: ð11Þ
Furthermore, the fraction of phosphorylated readout f is

f ¼ k3pþ k5ð1 − pÞ
ðk3 þ k4Þpþ ðk5 þ k6Þð1 − pÞ ; ð12Þ

giving

_wchem ¼ ðk3k6 − k4k5Þpð1 − pÞ½xT �NRT

ðk3 þ k4Þpþ ðk5 þ k6Þð1 − pÞ kT ln

�
k3k6
k4k5

�
:ð13Þ

For the full calculation, we refer to Discussion 1 in
Supplemental Material [38]. The mean-field approach
holds in the limit of many receptors, or when the readout
phosphorylation dynamics is slower than the receptor-
ligand dynamics, as required for the mechanism of time
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integration. If these conditions are not met, a given readout
performs many copies of autocorrelated data. Detailed
analysis of this regime is beyond the scope of this work,
but a brief discussion is provided in Discussion 1 of
Supplemental Material [38].
Given the rate of copying [Eq. (8)] and the rate at which

chemical work is done [Eq. (13)], we are now in a position
to calculate the chemical work done per copy cycle:

wchem

ncopy
¼ ðk3k6 − k4k5Þpð1 − pÞ

ððk3 þ k4Þpþ ðk5 þ k6Þð1 − pÞÞ2 kT ln

�
k3k6
k4k5

�
:

ð14Þ

This result can be simplified by noting that the probability a
copy is made of RL is not p, but rather

p0 ¼ p
k3 þ k4

ðk3 þ k4Þpþ ðk5 þ k6Þð1 − pÞ : ð15Þ

Indeed, if k3 þ k4 > k5 þ k6, a given ligand-bound recep-
tor is more frequently copied than a given unbound receptor
molecule (see Fig. 1). Using the expression for p0, Eq. (15),
the fractional yield of phosphorylated readout can be
written in the intuitive form f ¼ p0sRL þ ð1 − p0ÞsR, and
Eq. (14) can be simplified to

wchem

ncopy
¼ ðsR þ sRL − 1Þp0ð1 − p0ÞkT ln

�
k3k6
k4k5

�
: ð16Þ

The quantity kT lnðk3k6=ðk4k5ÞÞ has dimensions of energy
and is equal to the chemical work done during a single
phosphorylation-dephosphorylation cycle. We can split
it into an energy related to the accuracy of copying
RL, EsRL ¼ kT lnðk3=k4Þ ¼ kT ln½sRL=ð1 − sRLÞ�, and an
energy related to the accuracy of copying R, EsR ¼
kT lnðk6=k5Þ ¼ kT ln½sR=ð1 − sRÞ�.

wchem

ncopy
¼ ðsR þ sRL − 1Þp0ð1 − p0ÞðEsR þ EsRLÞ: ð17Þ

Note that, although EsR þ EsRL ¼ −Δμ1 − Δμ2, EsR and
EsRL incorporate differences in internal free energy between
x and x� and, hence, EsRL ≠ −Δμ1 and EsR ≠ −Δμ2, in
general. Inverting the sign of EsR and EsRL corresponds to a
mirror-image encoding, in which RL is copied to x and R to
x�. Low accuracy corresponds to EsR , EsRL → 0, when
sR ≈ 1

2
ð1þ EsR=2kTÞ, and sRL ≈ 1

2
ð1þ EsRL=2kTÞ. In the

symmetric case of EsR ¼ EsRL ¼ −Δμ=2, the accuracy of
copies is sR ¼ sRL ¼ 1

2
ð1 − Δμ=4kTÞ. A similar analysis,

with an equivalent outcome, is performed in Discussion 2
of Supplemental Material for a related system in which
receptors act only as kinases [38].

C. Optimal devices set a thermodynamic bound on the
dissipation of the biochemical network

The biochemical network has the dynamics of a process
in which readouts randomly perform copies of receptors. It
is also fundamentally dissipative—does the fact that it is a
copy process set a practically relevant thermodynamic
bound on this dissipation?
We can calculate the minimal thermodynamic cost of the

random computational copy process that is equivalent to
our biochemical network motif. In each copy operation of
this equivalent process, a memory bit M is exposed to an
initially uncorrelated data bit D [in state 1 with probability
pðd ¼ 1Þ ¼ p0 as defined in Eq. (15)]—the final result is a
memory bit in state 1 with probability pðm ¼ 1jd ¼ 1Þ ¼
sRL if D is in state 1, or probability pðm ¼ 1jd ¼ 0Þ ¼
1 − sR ifD is in state 0, giving a marginalized probability of
pðm ¼ 1Þ ¼ f ¼ p0sRL þ ð1 − p0ÞsR. Mutual information
I is then generated between the data and the memory during
each individual copy of the equivalent process, with

IðsR;sRL;p0Þ ¼ p0sRL ln
�
sRL
f

�
þp0ð1− sRLÞ ln

�
1− sRL
1−f

�

þð1−p0ÞsR ln
�

sR
1−f

�

þð1−p0Þð1− sRÞ ln
�
1− sR
f

�
: ð18Þ

We emphasize that the above expression is simply the
mutual information between bits M and D at the end
of a single discrete copy operation, calculated directly
as IðM;DÞ ¼ P

m;dpðm; dÞ ln½pðm; dÞ=pðmÞpðdÞ�. Here,
pðm; dÞ is determined straightforwardly from pðm; dÞ ¼
pðmjdÞpðdÞ, using the expressions above for pðdÞ and
pðmjdÞ in terms of p0 and the measurement accuracies sR
and sRL.
Immediately after copying, the data (receptor) and

memory (readout) are decoupled without loss of informa-
tion. This means that they remain correlated, even though
there is no direct physical interaction between the data and
memory anymore. Generating correlations that persist after
direct interactions cease implies pushing the combined
system out of equilibrium: the free energy required is kTI
[4,15,43]. Making computational copies thus amounts to
storing free energy in mutual information, and if this
information is not used to extract work (as done by an
efficient Maxwell demon) but simply lost in an uncon-
trolled fashion, then the process is irreversible and the
information lost sets a lower bound on dissipation. In the
random computational copy process to which we map our
biochemical network (see Sec. III A), the stored informa-
tion is not used to extract work, and, hence, kTI sets a lower
bound on entropy generation for the entire cyclic copy
operation [4]. For completeness, a typical copying device
and a set of quasistatic protocols that can achieve this
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bound for various input data are given in Fig. 1 of the
Supplemental Material and analyzed in Discussion 3
therein [38].
The biochemical network is equivalent to the random

copy process that generates information IðsR; sRL; p0Þ
given by Eq. (18) at each copy event, and work is not
extracted from the information generated. Its entropy
generation is thus constrained by the informational bound:

wchem

kTncopy
≥ IðsR; sRL; p0Þ: ð19Þ

This bound implies an efficiency η ¼ ðkTIÞ=ðwchem=
ncopyÞ ≤ 1.
It is important that the readout molecule states are

persistent—the ligand-binding state of the receptor is
remembered even after detaching, thus enabling time
integration [24,26]. Systems that do not make persistent
copies, including passive readouts [26], the receptors
themselves, the formation of templated copolymers in
which the copy remains bound to the template [44–46],
and also some more complicated sensing networks [28], are
not bound by equivalent limits. Previous work has linked
energy dissipation in similar systems to the erasure of the
memory [24,25], that is the resetting of the memory bit to a
well-defined state. As shown by Landauer, this erasure does
lead to the transfer of heat from the system to the
surroundings. Resetting a bit, however, is not intrinsically
thermodynamically irreversible [2,3,5,13,47]—indeed,
Landauer’s calculation of the minimal heat transfer applies
to a thermodynamically reversible erasure step. It is there-
fore the failure to extract work from correlations [5], rather
than erasure itself, that is the origin of the thermodynamic
irreversibility of a copy cycle. It is also this failure that sets
the fundamental thermodynamic lower bound on the work
to perform copy cycles. In fact, erasure is not even
necessary in an optimal copy cycle, which leaves open

the possibility that the biochemical network, which actually
contains no explicit erasure, could achieve the lower bound
of Eq. (19).

D. Trade-off between dissipation and error

The bound in Eq. (19) holds for all choices of sRL, sR,
and p0. But how close does the biochemical network come
to this bound, and can it be reached in certain conditions?
Our concrete mapping allows us to examine these ques-
tions. Initially, we consider the simplest case of equal
accuracy (sR ¼ sRL ¼ s). The dissipation per copy cycle
for the biochemical network [Eq. (17)] then reduces to

wchem

ncopy
¼ 2Esð2s − 1Þp0ð1 − p0Þ; ð20Þ

with Es ¼ EsRL ¼ EsR ¼ −ðΔμ1 þ Δμ2Þ=2, half of the free
energy released by the breakdown of ATP into ADP and P.
The chemical work per copy cycle, wchem=ncopy, is plotted
against p0 in Figs. 2(a) and 2(b) for two values of s (red
dashed lines). We also indicate behavior forbidden by the
thermodynamic bound of Eq. (19) (gray region). In Fig. 2(c),
we fixp0 ¼ 0.5 and plot the cost per copy cycle against s for
the biochemical network (red dashed line) and an optimal
system that saturates the bound (solid blue line).
Both the cost of the biochemcial network and the

thermodynamic bound drop as the required accuracy is
decreased. The irreversible loss of information bounds the
work, and lower accuracy implies less information is lost. It
is clear from Fig. 2(c), however, that the two systems have a
very different trade-off between dissipation and accuracy.
The required free-energy input for the biochemical case
diverges as s→1 [wchem=ncopy≈−2p0ð1−p0ÞkT lnð1− sÞ],
whereas the dissipated work remains finite in an optimal
system. It is clear that a cell will have to sacrifice some
accuracy for the sake of efficiency. Even in the limit of low

(a) (b) (c)

FIG. 2. Trade-off between dissipation and accuracy in copying. The (chemical) work per copy cycle for different probabilities p0 of
attempting to copy RL is plotted at two different values of the measurement accuracy: (a) s ¼ 0.80 and (b) s ¼ 0.99. Note that p0 ¼ p,
the probability that a receptor is in state RL, if k3 þ k4 ¼ k5 þ k6 when the sampling rate for the two receptor states is the same. The
biochemical implementation (red line) does not achieve the lower bound for a measuring device, which is the border of the shaded
region. The blue lines correspond to quasistatic protocols for the device in Fig. 1 of the Supplemental Material (see Discussion 3 [38])
and are optimal for a specific value of p0, p0�, at the given values of s. (c) Dissipation per copy cycle at p0 ¼ 0.5 as a function of s for the
biochemical network (dashed red line) and a system that saturates the bound (solid blue line). The solid blue line (p0� ¼ 0.5) saturates at
kT ln 2 for perfect accuracy (s ¼ 1), and the cost of the canonical biochemical motif diverges.
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accuracy (s → 1
2
) and at p0 ¼ 0.5, the biochemical network

is twice as costly as the bound (η → 1
2
from above).

Expanding Eqs. (19) and (20) for s → 1
2
giveswchem=ncopy ≈

4kTðs − 1
2
Þ2 for the biochemical network andwchem=ncopy ≈

2kTðs − 1
2
Þ2 for the optimal device and protocol.

The fundamental difference between the biochemical
network and an optimal protocol is illustrated in Fig. 3. An
optimal protocol requires reversible quasistatic manipula-
tion of (free-)energy levels over time [2,3]. In the bio-
chemical network, however, the overall differences in free
energy between levels are fixed over time, and not slowly
varied during a measurement. Instead, the receptors selec-
tively catalyze specific reactions dependent on the receptor
state. Because the free-energy levels, and hence the
energetic drive for the copy process, are constant, the
cellular copy protocol is energetically more costly than
the thermodynamically optimal one.
This difference is particularly intuitive in the limits of

low and high copy accuracy for p0 ¼ 0.5. For the bio-
chemical network, the difference between the fraction of
correct copies s and the fraction of incorrect copies 1 − s is
2ðs − 1

2
Þ. For p0 ¼ 0.5, in only half of these cases does a

reaction occur, and so the net number of reactions in the
intended direction is s − 1

2
per copy cycle. Each of these net

reactions has a cost given by the driving free energy,
Es ≈ 4ðs − 1

2
ÞkT, giving an overall cost per copy cycle of

wchem=ncopy ≈ 4kTðs − 1
2
Þ2. For an optimal quasistatic pro-

tocol, a similar argument can be constructed (see
Discussion 3 in Supplemental Material [38]), but the
average energy offset between the states at which a
transition occurs is less than the final offset required by
the accuracy Es. In the limit of Es → 0, we obtain an
average cost of Es=2, rather than Es as for the biochemical
network.
In the limit of high accuracy, s → 1 and Es → ∞, a

similar analysis shows why the biochemical network is
much less efficient than an optimal quasistatic protocol.
The cost of each transition continues to grow linearly with
Es in the biochemical network, explaining the divergence
of chemical work with s. In an optimal protocol, however,
the work saturates when Es ≫ kT. In this case, the energy
difference between the two states is raised quasistatically to
Es. Therefore, at each moment in time, the bit is in
equilibrium. As E is raised, the probability that the bit is
in the high-energy state decreases, until it rapidly becomes
negligible when E ≫ kT: from hereon, the higher-energy
state can be raised further without any additional cost.
As is evident from Figs. 2(a) and 2(b), the cost of both an

optimal system and the biochemical network decreases as
we move away from p0 ¼ 0.5 at fixed s. A fixed accuracy
measurement results in less information if the data them-
selves have low entropy, explaining the reduction in the
bound. For the biochemical network, if the readout is
exposed more often to one receptor state, it is more likely to
be in the appropriate output state prior to a copy. Hence,
fewer transitions are needed and less dissipation occurs. For
an alternative network in which receptors only function as
kinases, this automatic compensation occurs only at low p
(see Discussion 2 in Supplemental Material [38]).
The adaption to low-entropy data is so effective that η is

actually highest for p0 → 0 or 1 (when η → 1
2
from below

for all s), and lowest at p0 ¼ 1
2
(shown explicitly in Fig. 2 of

the Supplemental Material [38]). This intrinsic adaption is
fundamentally different from the behavior of typical copy-
ing architectures [2,3]. For these devices the protocol must
be parametrically adjusted for optimality as p0 is varied.
Figures 2(a) and 2(b) show, with blue lines, the work per
copy of three fixed protocols that are optimal for p0� ¼ 0.3,
0.5, and 0.7, respectively; each line is tangent to the
forbidden region at the specific value of p0 ¼ p0�, but
above it elsewhere, as derived in Discussion 3 of
Supplemental Material [38].
While the different “optimal protocols” corresponding to

the blue dashed lines in Fig. 2 are each optimal for a given
p0�, they do not perform better than the biochemical
network for all values of p0. Moreover, the details of a

(a) (b)

FIG. 3. Schematic comparison between the (free-)energy land-
scapes of the biochemical network (a) and a thermodynamically
optimal protocol (b). In (a), a ladder of states exists, with
successive rungs related by the turnover of a single ATP (implicit
in this figure, explicit in Fig. 1). In the absence of an enzyme, all
transitions are slow (indicated by the dashed free-energy barrier
connecting the states). In the presence of R, half of the transitions
are catalyzed and can occur rapidly (solid lines); when exposed to
RL, the alternative transitions are rapid. The heights of the rungs,
however, are fixed, meaning that all transitions involve a fixed
amount of chemical work equal to the offset. By contrast, for the
optimal protocol in (b), switching between states is driven by
slowly destabilizing one state with respect to the other, so that the
majority of transitions have already occurred before the offset
approaches its limiting value.
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cycle depend on p0�, and so implementing an efficient
protocol with p0� ≈ p0 would require an estimate of p0. In
our cellular context, however, p0 is precisely the quantity
that the system is trying to measure (rather than the state of
individual receptors given a known p0). The best that could
be done, therefore, would be to pick a particular protocol
and update it as more information became available.
Clearly, however, implementing this behavior in an
autonomous device would require substantial additional
complexity.
We show that the biochemical network cannot reach the

fundamental limit of efficiency for sR ¼ sRL, regardless of
the system parameters. Neither reducing the reaction rates
nor the thermodynamic driving permits η > 1=2. It is
sometimes assumed that systems under steady-state forcing
are effectively quasistatic or reversible in the limit of this
forcing being weak [25]—clearly, that is not the case here.
For sR ≠ sRL, it is possible to obtain an efficiency η > 1=2,
and η can even approach unity for extreme values of p0, sR,
and sRL (see Fig. 3 and Discussion 4 in the Supplemental
Material [38]). Nonetheless, it remains true that η cannot
converge on unity for general p0, regardless of how sR and
sRL are varied. The biochemical network is more dissipa-
tive than an optimal process, because operating at a
constant thermodynamic driving force leads to more
energetically expensive transitions than slowly manipulat-
ing energy levels.
Thus far, we have emphasized differences between the

thermodynamic bound and the cost of the biochemical
protocol. It is remarkable, however, that the biochemical
network comes so close to the lower bound, even at fairly
high accuracies. Reaching 99% accuracy for p0 ¼ 0.5
requires less than 4 times the dissipation of the lower
bound, and η is even higher for p0 ≠ 0.5. Further, this
efficiency can be achieved at an arbitrarily high rate of
copying—the absolute rates do not enter the expression in
Eq. (20). Through our quantitative mapping, we show that a
physically reasonable model system operating autono-
mously at an arbitrary rate and with a high copying
accuracy comes close to the fundamental thermodynamic
limit on the cost of a copy process.

E. One-step copy processes are maximally efficient
for the biochemical network

The push-pull network considered so far is a one-step
copy process, with the conversion between the phospho-
rylation states occurring via a single instantaneous tran-
sition. We now show that more complex processes,
involving multiple steps or pathways, cannot improve
the trade-off between dissipation and precision in autono-
mous, steady-state systems driven directly by an out-of-
equilibrium chemical fuel. We again consider the Markov
process with discrete states, but we now allow for multiple
states and multiple parallel pathways between x and x� (see
Fig. 4). We explicitly consider the interconversion of x and

x� by RL; an equivalent argument holds for reactions
mediated by R. The autonomous requirement prohibits
external control and implies that transition rates are fixed
over time.
In the simple one-step process, the accuracy of copying

RL is sRL ¼ k3=ðk3 þ k4Þ. In a more general process,
however, transitions between x and x� are not instantaneous
and, hence, cannot be described with rate constants. The
natural generalization is to consider the flux ϕ from x to x�
and vice versa, which is defined as the rate at which
trajectories leave x and subsequently reach x� instead of
returning to x [48]. The fluxes determine the copy accuracy
in the same way as the rate constants for the one-step
process, since they represent the rates that receptors initiate
correct and incorrect transitions between x and x�.
Consider the accuracy of copying RL, sRL ¼ ϕ3=

ðϕ3 þ ϕ4Þ ¼ 1=ð1þ ϕ4=ϕ3Þ, which depends solely on
ϕ3=ϕ4. We define the set of paths S that start by leaving
x and reach x� via an interaction with RL without returning
to x. The entropy change in the environment ΔSenv½zðtÞ�
due to each of these individual trajectories zðtÞ is related to
the probability of observing the forward pathway, and its
reverse ~zðtÞ [49–51]:

ΔSenv½zðtÞ� ¼ k ln

�
p½zðtÞjzð0Þ ¼ x�
p½~zðtÞj~zð0Þ ¼ x��

�
− ΔSint: ð21Þ

Here, ΔSint is an intrinsic entropy difference between
macrostates x and x� that arises because discrete biochemi-
cal states contain multiple microstates. It is a property of the
states x and x�, rather than the transitions, and modifying it
will not reduce overall dissipation in any steady-state
network since the antagonistic transitions via R must have
an equal and opposite ΔSint. We can then divide S into
subsets Si according to ΔSenv½zðtÞ�; all paths within Si

generate the same entropy in the environment, ΔSienv.
Conceptually, different subsets might correspond to path-
ways that consume different amounts of ATP. A simple
one-step pathway, as considered hitherto, is a special case
of a system with a single Si.

(a) (c)

(b)

FIG. 4. Copy processes of increasing complexity. (a) A simple
one-step process in which the RL-bound state is assumed short-
lived. (b) A tightly coupled process in which the readout passes
through multiple states while bound to the receptor, but only one
pathway is possible. (c) A more general process in which multiple
pathways between x and x� exist. Each different path could be
associated with different entropy increases in the environment.
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The probability of observing any pathway within Si
given an initial state z ¼ x is

PðSijxÞ ¼
X

zðtÞ∈Si

p½zðtÞjzð0Þ ¼ x�: ð22Þ

Similarly, PðS−ijx�Þ ¼
P

zðtÞ∈Si
p½~zðtÞj~zð0Þ ¼ x�� is the

probability of observing a reverse of a pathway in Si

given an initial state x�. By design, ΔSienv þ ΔSint ¼
k ln½PðSijxÞ=PðS−ijx�Þ�. Further, the ratio of forwards to
backwards fluxes is given by

ϕ3

ϕ4

¼
P

iPðSijxÞP
iPðS−ijx�Þ

: ð23Þ

An immediate consequence is that in systems with only
one subset of S in which all transitions have the same
ΔSenv ≡ ΔStightenv , the ratio of forwards to backwards fluxes
is fixed by

k ln

�
ϕ3

ϕ4

�
¼ ΔStightenv þ ΔSint: ð24Þ

Such a process is “tightly coupled.” In our framework,
being tightly coupled implies that each transition x to x� is
associated with the breakdown of the same number of ATP
molecules. In this case, regardless of the number of
intermediate steps or possible pathways in a tightly coupled
process between two given states x and x�, the copy
accuracy is unambiguously determined by the entropy
change in the environment. Thus, all tightly coupled
processes with the same accuracy are associated with the
same dissipation. Since the one-step process we have
considered hitherto is tightly coupled, all tightly coupled
processes have the same accuracy-efficiency trade-off as
we have derived.
It is also possible to consider processes that are not

tightly coupled, with multiple subsets Si. In this case, the
average entropy generated in the environment per x → x�
transition is given by

ΔSmulti
env ¼ k

X
i

PmðSijxÞP
jP

mðSjjxÞ
ln

�
PmðSijxÞ
PmðS−ijx�Þ

�
− ΔSint;

ð25Þ
where we use the “m” superscript to denote probabilities for
this specific multisubset system. The accuracy of this
process is still determined by Eq. (23): ϕmulti

3 =ϕmulti
4 ¼P

iP
mðSijxÞ=PmðS−ijx�Þ. We can compare this multi-

subset process to a tightly coupled process with the same
accuracy: ϕtight

3 =ϕtight
4 ¼ ϕmulti

3 =ϕmulti
4 . The key point is that

since entropy generation and accuracy are unambiguously
related for a tightly coupled process [Eq. (24)], any tightly
coupled process between x and x� with the same accuracy
as the multi-subset generates

ΔStightenv þΔSint¼¼ k ln
ϕmulti
3

ϕmulti
4

¼ k ln

P
iP

mðSijxÞP
iP

mðS−ijx�Þ
: ð26Þ

Combining Eqs. (25) and (26) thus yields

ΔSmulti
env − ΔStightenv ¼

X
i

Pm
NðSijxÞ ln

�
Pm
NðSijxÞ

Pm
NðS−ijx�Þ

�
; ð27Þ

where the subscript N indicates normalization: Pm
NðSijxÞ ¼

PmðSijxÞ=
P

jP
mðSjjxÞ, and Pm

NðS−ijx�Þ is defined equiv-
alently. Equation (27) is a Kullback-Leibler divergence
between the families of paths taken by forwards and
backwards transitions in the multi-subset process, and is
therefore necessarily non-negative. Thus,

ΔSmulti
env − ΔStightenv ≥ 0: ð28Þ

Similarly, paths that begin and end in x or x� generate no
entropy for a tightly coupled process, whereas the entropy
generation of these paths is non-negative in general. For a
system operating in steady state, increased entropy depos-
ited into the environment implies less efficiency. Therefore,
no process of a given copy accuracy is more efficient than a
tightly coupled one. The limits derived for a one-step
process, a special case of a tightly coupled process, are
therefore general.
Our derivation is related to the proof that the estimate of

dissipation obtained from the irreversibility of a coarse-
grained trajectory gives a lower bound on the true entropy
generation [52,53]. The results are fundamentally distinct,
however. We could consider coarse graining a complex
copy process so that all states were now x or x�. However,
the result would not be a simple one-step process with the
same accuracy and lower dissipation; the dynamics would
be non-Markovian and reflect the underlying complex
process. To state that a true one-step process could
reproduce the accuracy at the same cost as estimated from
the coarse-grained description would be to assume the
conjecture that is to be proven.

F. Biochemical implementation of an optimal
device and protocol

We argue that no biochemical copying network, operat-
ing autonomously and directly powered by a nonequili-
brium fuel supply, can reach the thermodynamic bound on
efficiency for general input data. We now consider whether
this is a fundamental property of biochemical reactions, or
whether biomolecules could, in principle, act as thermo-
dynamically optimal bits.
There are two principal differences between cellular

biochemical networks and optimal protocols [2,3,14].
Firstly, cellular networks operate continuously, rather than
taking a series of discrete measurements with external
clocking. Secondly, as emphasized above, they involve no
manipulation of (free-)energy levels over time, as illus-
trated in Fig. 3.
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Concerning the first difference, in Discussion 5 of the
Supplemental Material we show that a clocked analogue of
the cellular push-pull motif (illustrated in Fig. 4 therein)
gives a work per copy identical to the continuous case [38].
This is because, despite being operated in a clocked
fashion, the device is still out of equilibrium and functions
at the constant chemical potential of fuel molecules. The
fact that cellular networks operate in a stochastic continu-
ous manner rather than a clocklike fashion is not the
fundamental reason why they cannot reach the bound on
the energy cost of a copy operation.
Functioning out of equilibrium is necessary for a device

operating at constant chemical potential of fuel; if the
reactions were in equilibrium, the receptor (which is a
catalyst) could not influence the yield of x=x�. We now
show that a system driven by quasistaic manipulation of
ATP, ADP, and P concentrations could reach the thermo-
dynamic bound, confirming that the autonomous network
is inefficient due to its static free-energy levels. To operate
in the quasistatic limit, RL and R must be long-lived; in
practice, constitutively active kinases and phosphatases
could be used.
We consider a device and measurement cycle as illus-

trated schematically in Fig. 5. The key ingredients are the
possibility of manipulating the concentrations of ATP,

ADP, and P in the vicinity of the readout, and the ability
to bring the readout into or out of close proximity with
receptors. We consider the same receptor or readout
reactions as in Eq. (1), and now define the free-energy
changes of reaction ΔGp for the phosphorylation of x by
RL and ΔGd for the dephosphorylation of x� by R. These
quantities are given by

ΔGp ¼ μADP − μATP þ ΔGx=x� ;

ΔGd ¼ μP − ΔGx=x� ; ð29Þ

in whichΔGx=x� quantifies the intrinsic stability of x and x�

(assumed to be independent of the chemical potentials of
ATP, ADP, and P [50]). The reactions can thus be
manipulated by controlling μATP, μADP, and μP, for exam-
ple, by coupling of the system to a series of reservoirs
[Fig. 5(b)]. We outline an optimal cycle below, and
calculate the chemical work done on the readout subsystem
by the reservoirs (the average number of reactions of a
given type, multiplied by the associated chemical work,
integrated over the whole process) in Discussion 6 of the
Supplemental Material [38]. Throughout, we assume that
receptor states are stable, and that reactions cannot occur
without a catalyst. The eight steps of the cycle are intended
to be closely analogous to typical computational protocols
[2,3,14]; for subtleties involved in this comparison, see
Discussion 6 in Supplemental Material [38]. The system
contains a readout (the memory bit); a receptor of known
state R (a reference bit); and a receptor in either R or RL
(the data bit).
The readout begins coupled to a buffer with ΔGp,

ΔGd ¼ −ΔGr (ΔGr is assumed to be large and positive).
There is no receptor in close proximity, but the readout has
been reset (equilibrated at the end of a previous measure-
ment cycle by a receptor in the R state), and, therefore, is in
state xwith probability 1=½1þ expð−ΔGr=kTÞ�. In fact, the
accuracy of this reset does not influence the cost of the
cycle (see Discussion 6 in the Supplemental Material [38]).
(1) The readout is brought into close proximity with a

receptor of known state R.
(2) ΔGp, ΔGd are slowly (quasistatically) raised from

−ΔGr to 0. Steps 1 and 2 allow the state of the memory to
be reversibly uncorrelated from the reference receptor, prior
to the measurement.
(3) The readout is brought into close proximity with a

receptor of unknown state (ligand-bound with probability
p0). ΔGp, ΔGd are then slowly lowered to −ΔGs. In this
step, the state of the readout is set to match that of the
receptor with accuracy s ¼ 1=½1þ expð−ΔGs=kTÞ�.
(4) The readout is moved away from the receptor.
(5) ΔGp, ΔGd are set to ΔGoff . This stage constitutes the

end of the copy subprocess; if the unknown receptor is in
state RL, then the readout is in x�, with probability
s ¼ 1=½1þ expð−ΔGs=kTÞ�. Similarly, if the unknown

(a) (b)

FIG. 5. A biochemical implementation of an optimal device and
copy protocol. The cycle is illustrated in (a), and the steps are
explained in the text. The system contains two receptors: one
acting as a reference bit in state R for resetting and a receptor
acting as a data bit in state RL or R. These receptors are attached
to either end of a reaction volume. A readout molecule (memory
bit) is tethered to the side of the reaction volume. The color of the
reaction volume indicates the chemical potential of fuel mole-
cules in solution: it is dark when ΔGp, ΔGd are large and
negative and white when ΔGp, ΔGd ¼ 0. (b) A device for
implementing this cycle. A small reaction volume is coupled to a
piston containing a series of reservoirs of varying ATP, ADP, and
P content. Similarly, the receptors and readout can be brought in
and out of proximity by manipulation of a second piston.
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receptor is in state R, the readout is in x with probabil-
ity s ¼ 1=½1þ expð−ΔGs=kTÞ�.
(6) We now decorrelate the memory and data bits at a

nonzero bias between the two readout states, ΔGp;ΔGd ¼
ΔGoff . To reach the fundamental thermodynamic bound,
ΔGoff must be chosen carefully, and depends on p0 and s.
To decorrelate, the readout is brought into close proximity
with a known receptor of state R. The readout relaxes
to a state reflective of ΔGoff via the reaction Rþ x�⇌
Rþ xþ P.
(7) The readout molecule is reset by quasistatically

lowering ΔGp, ΔGd to −ΔGr from ΔGoff , returning it
to a state dominated by x.
(8) The readout is separated from the reference bit,

returning the system to the initial state.
The readout and receptor are in the same state at the start

and finish of the cycle; thus, the net chemical work of the
reservoirs equates to the free energy dissipated by the entire
system. As shown in Discussion 6 of the Supplemental
Material, minimizing dissipation with respect to ΔGoff at
fixed p0 and accuracy s (fixed by ΔGs) gives a chemical
work per copy equal to the mutual information generated
by a measurement [38]. In the special case p0 ¼ 1=2,
ΔGs → ∞, wchem → kT ln 2, as expected. A single readout
could also be made to copy multiple receptors sequentially
—using, for example, a series of receptors anchored to a
polymer, as in Fig. 4 of the Supplemental Material [38]. We
note that it is also possible to construct an optimal cycle if
the receptor is only catalytically active in the RL state; see
Fig. 5 and Discussion 7 in the Supplemental Material [38].

IV. DISCUSSION

We describe a canonical cellular readout network rigor-
ously in terms of computational copy operations, thus
demonstrating that the system is indeed bound by the
thermodynamics of computation. For a general distribution
of input data, the cellular network cannot reach this
fundamental limit of efficiency. Unlike optimal computa-
tional protocols, the thermodynamic driving force used to
push the memory device between its states is not introduced
quasistatically. Instead, a continuously operating autono-
mous network must have a constant thermodynamic
discrimination between correct and incorrect copy out-
comes over time. Even in the limit where the driving force
and, hence, the accuracy become vanishingly small, the
cellular system is not thermodynamically optimal. In the
regime of high accuracy, the difference is larger: while
optimal protocols can reach 100% accuracy for a finite cost
of kT lnð2Þ, cellular networks can only achieve 100%
accuracy for a cost that diverges. Nonetheless, achieving
99% accuracy for an unbiased distribution of input data
requires less than 4kT ln 2 of dissipation per copy cycle,
and the relative performance of the biochemical network
for biased input data can be even better. Although kT sets
an energy scale, it is not obvious a priori that the numerical

factors should be so low. For example, the recently derived
“thermodynamic uncertainty relation” [54]—in which the
cost of achieving a relative uncertainty ϵ in the number of
steps of a biomolecular process was shown to be at least
2kT=ϵ2—gives 20000kT for 99% accuracy.
Not only can this canonical cellular signaling system get

remarkably close to the fundamental bound for efficiency
of copying at relatively high accuracy, it can do so at an
arbitrarily high absolute copy rate. Further, the system is
autonomous, and so there is no need to consider the
intrinsic costs of applying a time-varying yet stable control
to a bit, as must be done in typical protocols [55,56]. The
canonical biochemical network also naturally adapts to
high or low levels of ligand-bound receptors, reducing its
dissipation per copy cycle in a way that standard quasistatic
protocols cannot achieve without feedback. The remarkable
possibilities of this biochemical network not only show that
the thermodynamic limits of computation are genuinely
relevant to practical systems, but emphasize that biological
systems are an excellent environment to rigorously inves-
tigate these limits in a concrete, autonomous setting.
Our mapping emphasizes the cause of the minimal

thermodynamic dissipation for the readout network.
Dissipation does not occur because the memory is “erased”
[25]—erasure itself is not intrinsically irreversible, and no
distinct erasure step is present. Rather, the stable correla-
tions generated between noninteracting systems by copying
are not used to extract work [5]. Other biochemical
processes, such as ubiquitination, transcription, translation,
and replication, result in correlations between degrees of
freedom that are not maintained by direct interactions.
Indeed, although we are motivated by the time integration
of receptors by readouts, our analysis directly applies to
other push-pull networks. Our work suggests that the
thermodynamics of these persistent correlations is a central
paradigm through which to understand this class of
systems.
Our analysis reveals that biomolecules can, in principle,

be used to implement protocols that achieve the thermo-
dynamic bound, and we provide an example. The key
difference from the canonical cellular network is the
manipulation of concentrations of ATP, ADP, and P over
time, during the course of the measurement. If these
manipulations are performed slowly enough, reactions
(except decorrelation of readout and receptor) can be
performed reversibly as reactants or products are gradually
stabilized or destabilized with respect to each other. We
thus propose a new class of systems in which the funda-
mental thermodynamics of computation can be explored, to
complement experiments done with optical or electrostatic
feedback traps [7,8] and magnetic systems [9]. Our
approach involves manipulating biomolecules by adjusting
the chemical potential of fuel molecules. Our experimental
system is particularly promising because the dissipation
could, in principle, be measured directly for a large number
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of devices acting in parallel rather than inferred from
positional trajectories, as it is done for the optical or
feedback traps. A second advantage of the proposed setup
is that the store of free energy used to perform work on the
system—the chemical fuel—is explicit. It is clear exactly
how free energy is transferred to and absorbed back from
the bit under study. In other analyses, the explicit mecha-
nism by which work is transferred between a bit and a store
of free energy is implicit. It is usually assumed that the store
of free energy can supply and absorb work efficiently, even
if the operations on the bit itself are irreversible. In practice,
however, work is typically supplied in a highly irreversible
fashion such as via lasers [7,8], and any work done by the
bit is lost rather than stored.
In an experimental realization, it would be natural to treat

the reservoirs and memory together as an extended system
thermally coupled to the outside world. In this case, the
chemical free energy dissipated during measurement is not
equal to the heat exchanged between the extended system
and the outside world [50]—the increased entropy of the
universe is instead manifest in a less uneven distribution of
ATP, ADP, and P between reservoirs. It would, therefore, be
most natural to measure dissipation through the changing
concentrations of ATP, ADP, and P as the reservoirs
exchange molecules—perhaps through radioactive labeling
of phosphates. Further, it should be possible to perform full
measurement cycles and probe the link between informa-
tion loss and irreversibility. By measuring the state of the
readout using, e.g., Förster resonance energy transfer
(FRET), it would also be possible to test the generalized
Jarzinksy equality, which shows that the state of the system
can be changed more efficiently by exploiting knowledge
of the state of the system [57–59].
The fact that cells employ thermodynamically inefficient

out-of-equilibrium circuits, despite energy budgets being
an important consideration in evolutionary fitness, high-
lights the constraints under which they function. Cells do
not have infinite time to perform a measurement, meaning
that quasistatic manipulations are infeasible. Further, our
quasistatic protocol requires that a readout molecule
exclusively encounters either ligand-bound or ligand-free
receptors during each copy process. This requires that the
ligand and ligand-free states of the receptors are stable on
the time scale of the measurement cycle, and also that
receptors in both states are not accessible to a single
readout. In reality, the finite lifetime of receptor states
places limits on the measurement time, and cells typically
have multiple receptor molecules with which any one
readout molecule can interact. The quasistatic cycle also
necessitates coordinating the separation between readouts
and receptors; although this is not inconceivable within a
cell, it would require elaborate machinery. Perhaps most
importantly, however, the quasistatic protocol requires
manipulation of the concentration of chemical fuels; this
manipulation must change chemical potentials by several

kT to be effective. Given the relatively small number of
chemical fuels available, and their extensive use in a range
of systems, it would be very surprising if the cell manip-
ulated chemical potentials purely for the sake of measure-
ment efficiency.
The final observation may also explain why cells use

such a strong chemical driving (the hydrolysis of ATP
typically provides approximately 20kT, deep into the low-
error regime), rather than more efficiently taking measure-
ments of only slightly lower accuracy [24]. Indeed, the
most efficient strategy from the perspective of sampling is
to make many low-accuracy copies [24]; this, however,
requires time (for the measurements to be independent) and
readout molecules (to store the measurements), resources
that are not free for the cell. The design of more efficient
copying architectures may be relevant in synthetic biology
and biological engineering in which the constraints and
goals are distinct from those of natural systems.
In this work, we focus on a single-step copy process.

However, we also argue that more complex copy processes,
including multiple bound receptor-readout states or even
multiple pathways in which different amounts of ATP can
be consumed, cannot be equally accurate at a lower cost.
Indeed, we show that all “tightly coupled” processes in
which all transitions consume the same amount of chemical
fuel are equally efficient, and all others cannot perform
better. At a physical level, it is intuitive that complex
process can be less efficient—they naturally allow for
dissipative cycles. Similarly, longer pathways are not
helpful, because one cannot make an irreversible process
less irreversible by breaking it into many small steps while
keeping the overall driving force fixed. For processes such
as kinetic proofreading, however, in which chemical fuel
drives reactions out of equilibrium, complex or longer
reaction pathways can allow the same outcome at a lower
cost [31,36,60,61]. The crucial difference is that in a copy
process the metric of accuracy is exactly the ratio of
forwards to backwards transition probabilities, which is
the quantity directly influenced by fuel consumption. More
fuel consumption always improves the metric. For other
tasks, fuel consumption is necessary, but other factors can
also influence performance. In kinetic proofreading, the
relevant metric is the relative occupancy of a binding site by
two different ligands [36,61]. This quantity is influenced by
the strength of chemical driving, but it is also limited by the
number of intermediate states at which there is an oppor-
tunity to discriminate between ligands. Thus, it can be
beneficial to consider multistage proofreading [62].
Our analysis of the cellular network uses the mean-field

limit, which becomes accurate when the receptor correla-
tion time τc is shorter than the relaxation time τr of the
readout network. Interestingly, this is precisely the optimal
regime for sensing [24], because the system can take
multiple τr=τc > 1 concentration measurements per recep-
tor molecule. In this regime, the readout molecules do not

THERMODYNAMICS OF COMPUTATIONAL COPYING IN … PHYS. REV. X 7, 021004 (2017)

021004-11



track the fluctuations in the receptor state, but, collectively,
average it. As a result, the “learning rate” [40] between the
readout and the receptor is actually zero in this limit (see
Discussion 1 in the Supplemental Material [38]). While the
opposite regime τr=τc < 1 is detrimental for the mecha-
nism of time integration, we do note that the work per
measurement is less. This is because in this regime the
measurements become correlated, and taking correlated
measurements requires less work for a given desired
accuracy. A full analysis of this regime is the subject of
further work. Similarly, we have not considered the
consequences of spontaneous reactions not mediated by
kinases and phosphatases. In the context of copying, these
reactions equate to spontaneous thermalization of bits,
which could be incorporated into our mapping.
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