4 research outputs found

    Back to basics: historical option pricing revisited

    Full text link
    We reconsider the problem of option pricing using historical probability distributions. We first discuss how the risk-minimisation scheme proposed recently is an adequate starting point under the realistic assumption that price increments are uncorrelated (but not necessarily independent) and of arbitrary probability density. We discuss in particular how, in the Gaussian limit, the Black-Scholes results are recovered, including the fact that the average return of the underlying stock disappears from the price (and the hedging strategy). We compare this theory to real option prices and find these reflect in a surprisingly accurate way the subtle statistical features of the underlying asset fluctuations.Comment: 14 pages, 2 .ps figures. Proceedings, to appear in Proc. Roy. So

    Elements for a Theory of Financial Risks

    Full text link
    Estimating and controlling large risks has become one of the main concern of financial institutions. This requires the development of adequate statistical models and theoretical tools (which go beyond the traditionnal theories based on Gaussian statistics), and their practical implementation. Here we describe three interrelated aspects of this program: we first give a brief survey of the peculiar statistical properties of the empirical price fluctuations. We then review how an option pricing theory consistent with these statistical features can be constructed, and compared with real market prices for options. We finally argue that a true `microscopic' theory of price fluctuations (rather than a statistical model) would be most valuable for risk assessment. A simple Langevin-like equation is proposed, as a possible step in this direction.Comment: 22 pages, to appear in `Order, Chance and Risk', Les Houches (March 1998), to be published by Springer/EDP Science

    Growth Optimal Investment and Pricing of Derivatives

    Full text link
    We introduce a criterion how to price derivatives in incomplete markets, based on the theory of growth optimal strategy in repeated multiplicative games. We present reasons why these growth-optimal strategies should be particularly relevant to the problem of pricing derivatives. We compare our result with other alternative pricing procedures in the literature, and discuss the limits of validity of the lognormal approximation. We also generalize the pricing method to a market with correlated stocks. The expected estimation error of the optimal investment fraction is derived in a closed form, and its validity is checked with a small-scale empirical test.Comment: 21 pages, 5 figure
    corecore