2 research outputs found

    Infrared heterodyne radiometer for airborne atmospheric transmittance measurements

    Get PDF
    An infrared heterodyne radiometer (IHR) was used to measure atmospheric transmittance at selected hydrogen fluoride (2.7 micrometer) and deuterium fluoride (3.8 micrometer) laser transitions. The IHR was installed aboard a KC-135 aircraft for an airborne atmospheric measurements program that used the sun as a backlighting source for the transmission measurements. The critical components are: a wideband indium antimonide (1nSb) photomixer, a CW HF/DF laser L0, a radiometric processor, and a 1900 K blackbody reference source. The measured heterodyne receiver sensitivity (NEP) is 1.3 x 10 to the -19th power W/Hz, which yields a calculated IHR temperature resolution accuracy of delta I sub S/-3 sub S = 0.005 for a source temperature of 1000 K and a total transmittance of 0.5. Measured atmospheric transmittance at several wavelengths and aircraft altitudes from 9.14 km (30,000 ft) to 13.72 km (45,000 ft) were obtained during the measurements program and have been compared with values predicted by the AFGL Atmospheric Line Parameter Compilation

    Infrared heterodyne receivers with IF responses approaching 5 GHz

    Get PDF
    Specialized coherent 10.6 micrometer infrared receivers were developed with infrared frequency responses approaching 5 GHz. Carbon dioxide lasers were employed for these applications because of their availability, stability, and high average power levels. Heterodyne receivers which employ extrinsic photoconductive Ge:Cu(Sb) mixers were developed for measurements of carbon dioxide laser scattering to determine: (1) the drive lower hybrid wave density fluctuations; and (2) the plasma ion temperature of the dense Tokamak plasmas
    corecore