7 research outputs found

    An Empirical Explanation of the Speed-Distance Effect

    Get PDF
    Understanding motion perception continues to be the subject of much debate, a central challenge being to account for why the speeds and directions seen accord with neither the physical movements of objects nor their projected movements on the retina. Here we investigate the varied perceptions of speed that occur when stimuli moving across the retina traverse different projected distances (the speed-distance effect). By analyzing a database of moving objects projected onto an image plane we show that this phenomenology can be quantitatively accounted for by the frequency of occurrence of image speeds generated by perspective transformation. These results indicate that speed-distance effects are determined empirically from accumulated past experience with the relationship between image speeds and moving objects

    Chinese characters reveal impacts of prior experience on very early stages of perception

    Get PDF
    Visual perception is strongly determined by accumulated experience with the world, which has been shown for shape, color, and position perception, in the field of visuomotor learning, and in neural computation. In addition, visual perception is tuned to statistics of natural scenes. Such prior experience is modulated by neuronal top-down control the temporal properties of which had been subject to recent studies. Here, we deal with these temporal properties and address the question how early in time accumulated past experience can modulate visual perception

    An empirical explanation of aperture effects

    No full text
    The perceived direction of a moving line changes, often markedly, when viewed through an aperture. Although several explanations of this remarkable effect have been proposed, these accounts typically focus on the percepts elicited by a particular type of aperture and offer no biological rationale. Here, we test the hypothesis that to contend with the inherently ambiguous nature of motion stimuli the perceived direction of objects moving behind apertures of different shapes is determined by a wholly empirical strategy of visual processing. An analysis of moving line stimuli generated by objects projected through apertures shows that the directions of motion subjects report in psychophysical testing is accounted for by the frequency of occurrence of the 2D directions of stimuli generated by simulated 3D sources. The completeness of these predictions supports the conclusion that the direction of perceived motion is fully determined by accumulated behavioral experience with sources whose physical motions cannot be conveyed by image sequences as such

    An empirical explanation of the flash-lag effect

    No full text
    When a flash of light is presented in physical alignment with a moving object, the flash is perceived to lag behind the position of the object. This phenomenon, known as the flash-lag effect, has been of particular interest to vision scientists because of the challenge it presents to understanding how the visual system generates perceptions of objects in motion. Although various explanations have been offered, the significance of this effect remains a matter of debate. Here, we show that: (i) contrary to previous reports based on limited data, the flash-lag effect is an increasing nonlinear function of image speed; and (ii) this function is accurately predicted by the frequency of occurrence of image speeds generated by the perspective transformation of moving objects. These results support the conclusion that perceptions of the relative position of a moving object are determined by accumulated experience with image speeds, in this way allowing for visual behavior in response to real-world sources whose speeds and positions cannot be perceived directly
    corecore