53 research outputs found

    Charged exctions in the fractional quantum Hall regime

    Full text link
    We study the photoluminescence spectrum of a low density (ν<1\nu <1) two-dimensional electron gas at high magnetic fields and low temperatures. We find that the spectrum in the fractional quantum Hall regime can be understood in terms of singlet and triplet charged-excitons. We show that these spectral lines are sensitive probes for the electrons compressibility. We identify the dark triplet charged-exciton and show that it is visible at the spectrum at T<2T<2 K. We find that its binding energy scales like e2/le^{2}/l , where ll is the magnetic length, and it crosses the singlet slightly above 15 T.Comment: 10 pages, 5 figure

    Experimental studies of the fractional quantum Hall effect in the first excited Landau level

    Full text link
    We present a spectrum of experimental data on the fractional quantum Hall effect (FQHE) states in the first excited Landau level, obtained in an ultrahigh mobility two-dimensional electron system (2DES) and at very low temperatures and report the following results: For the even-denominator FQHE states, the sample dependence of the nu=5/2 state clearly shows that disorder plays an important role in determining the energy gap at nu=5/2. For the developing nu=19/8 FQHE state the temperature dependence of the Rxx minimum implies an energy gap of ~5mK.The energy gaps of the odd-denominator FQHE states at nu=7/3 and 8/3 also increase with decreasing disorder, similar to the gap at 5/2 state. Unexpectedly and contrary to earlier data on lower mobility samples, in this ultra-high quality specimen, the nu=13/5 state is missing, while its particle-hole conjugate state, the nu=12/5 state, is a fully developed FQHE state. We speculate that this disappearance might indicate a spin polarization of the nu=13/5 state. Finally, the temperature dependence is studied for the two-reentrant integer quantum Hall states around nu=5/2 and is found to show a very narrow temperature range for the transition from quantized to classical value.Comment: to be publishe

    Optical excitations of a self assembled artificial ion

    Full text link
    By use of magneto-photoluminescence spectroscopy we demonstrate bias controlled single-electron charging of a single quantum dot. Neutral, single, and double charged excitons are identified in the optical spectra. At high magnetic fields one Zeeman component of the single charged exciton is found to be quenched, which is attributed to the competing effects of tunneling and spin-flip processes. Our experimental data are in good agreement with theoretical model calculations for situations where the spatial extent of the hole wave functions is smaller as compared to the electron wave functions.Comment: to be published in Physical Review B (rapid communication

    Magnetic field dependence of the energy of negatively charged excitons in semiconductor quantum wells

    Full text link
    A variational calculation of the spin-singlet and spin-triplet state of a negatively charged exciton (trion) confined to a single quantum well and in the presence of a perpendicular magnetic field is presented. We calculated the probability density and the pair correlation function of the singlet and triplet trion states. The dependence of the energy levels and of the binding energy on the well width and on the magnetic field strength was investigated. We compared our results with the available experimental data on GaAs/AlGaAs quantum wells and find that in the low magnetic field region (B<18 T) the observed transition are those of the singlet and the dark triplet trion (with angular momentum Lz=1L_z=-1), while for high magnetic fields (B>25 T) the dark trion becomes optically inactive and possibly a transition to a bright triplet trion (angular momentum Lz=0L_z=0) state is observed.Comment: 9 pages, 10 figures submitted to Phys. Rev.

    Orbital Magnetism in Small Quantum Dots with Closed Shells

    Full text link
    It is found that various kind of shell structure which occurs at specific values of the magnetic field leads to the disappearance of the orbital magnetization for particular magic numbers of small quantum dots with an electron number A<30A < 30.Comment: 4 pages, latex file, four figures as postscript files, to appear at JETP Letters, December 199

    Spin interactions and switching in vertically tunnel-coupled quantum dots

    Full text link
    We determine the spin exchange coupling J between two electrons located in two vertically tunnel-coupled quantum dots, and its variation when magnetic (B) and electric (E) fields (both in-plane and perpendicular) are applied. We predict a strong decrease of J as the in-plane B field is increased, mainly due to orbital compression. Combined with the Zeeman splitting, this leads to a singlet-triplet crossing, which can be observed as a pronounced jump in the magnetization at in-plane fields of a few Tesla, and perpendicular fields of the order of 10 Tesla for typical self-assembled dots. We use harmonic potentials to model the confining of electrons, and calculate the exchange J using the Heitler-London and Hund-Mulliken technique, including the long-range Coulomb interaction. With our results we provide experimental criteria for the distinction of singlet and triplet states and therefore for microscopic spin measurements. In the case where dots of different sizes are coupled, we present a simple method to switch on and off the spin coupling with exponential sensitivity using an in-plane electric field. Switching the spin coupling is essential for quantum computation using electronic spins as qubits.Comment: 13 pages, 9 figure

    Structures for Interacting Composite Fermions: Stripes, Bubbles, and Fractional Quantum Hall Effect

    Full text link
    Much of the present day qualitative phenomenology of the fractional quantum Hall effect can be understood by neglecting the interactions between composite fermions altogether. For example the fractional quantum Hall effect at ν=n/(2pn±1)\nu=n/(2pn\pm 1) corresponds to filled composite-fermion Landau levels,and the compressible state at ν=1/2p\nu=1/2p to the Fermi sea of composite fermions. Away from these filling factors, the residual interactions between composite fermions will determine the nature of the ground state. In this article, a model is constructed for the residual interaction between composite fermions, and various possible states are considered in a variational approach. Our study suggests formation of composite-fermion stripes, bubble crystals, as well as fractional quantum Hall states for appropriate situations.Comment: 16 pages, 7 figure

    Adiabatic description of nonspherical quantum dot models

    Full text link
    Within the effective mass approximation an adiabatic description of spheroidal and dumbbell quantum dot models in the regime of strong dimensional quantization is presented using the expansion of the wave function in appropriate sets of single-parameter basis functions. The comparison is given and the peculiarities are considered for spectral and optical characteristics of the models with axially symmetric confining potentials depending on their geometric size making use of the total sets of exact and adiabatic quantum numbers in appropriate analytic approximations

    Long-lived charged multiple-exciton complexes in strong magnetic fields

    Get PDF
    We consider the charged exciton complexes of an ideal two-dimensional electron-hole system in the limit of strong magnetic fields. A series of charged multiple-exciton states is identified and variational and finite-size exact diagonalization calculations are used to estimate their binding energies. We find that, because of a hidden symmetry, bound states of excitons and an additional electron cannot be created by direct optical absorption and, once created, have an infinite optical recombination lifetime. We also estimate the optical recombination rates when electron and hole layers are displaced and the hidden symmetry is violated.Comment: 12 pages + 2 PostScript figures, Revtex, Submitted to Phys. Rev. Let

    Non-Abelian Anyons and Topological Quantum Computation

    Full text link
    Topological quantum computation has recently emerged as one of the most exciting approaches to constructing a fault-tolerant quantum computer. The proposal relies on the existence of topological states of matter whose quasiparticle excitations are neither bosons nor fermions, but are particles known as {\it Non-Abelian anyons}, meaning that they obey {\it non-Abelian braiding statistics}. Quantum information is stored in states with multiple quasiparticles, which have a topological degeneracy. The unitary gate operations which are necessary for quantum computation are carried out by braiding quasiparticles, and then measuring the multi-quasiparticle states. The fault-tolerance of a topological quantum computer arises from the non-local encoding of the states of the quasiparticles, which makes them immune to errors caused by local perturbations. To date, the only such topological states thought to have been found in nature are fractional quantum Hall states, most prominently the \nu=5/2 state, although several other prospective candidates have been proposed in systems as disparate as ultra-cold atoms in optical lattices and thin film superconductors. In this review article, we describe current research in this field, focusing on the general theoretical concepts of non-Abelian statistics as it relates to topological quantum computation, on understanding non-Abelian quantum Hall states, on proposed experiments to detect non-Abelian anyons, and on proposed architectures for a topological quantum computer. We address both the mathematical underpinnings of topological quantum computation and the physics of the subject using the \nu=5/2 fractional quantum Hall state as the archetype of a non-Abelian topological state enabling fault-tolerant quantum computation.Comment: Final Accepted form for RM
    corecore