4 research outputs found

    Resolved SPLASH Chemodynamics in Andromeda's PHAT Stellar Halo and Disk: On the Nature of the Inner Halo Along the Major Axis

    Full text link
    Stellar kinematics and metallicity are key to exploring formation scenarios for galactic disks and halos. In this work, we characterized the relationship between kinematics and photometric metallicity along the line-of-sight to M31's disk. We combined optical HST/ACS photometry from the Panchromatic Hubble Andromeda Treasury (PHAT) survey with Keck/DEIMOS spectra from the Spectroscopic and Photometric Landscape of Andromeda's Stellar Halo (SPLASH) survey. The resulting sample of 3536 individual red giant branch stars spans 4-19 projected kpc, making it a useful probe of both the disk and inner halo. We separated these stars into disk and halo populations by modeling the line-of-sight velocity distributions as a function of position across the disk region, where 70.9% stars have a high likelihood of belonging to the disk and 17.1% to the halo. Although stellar halos are typically thought to be metal-poor, the kinematically identified halo contains a significant population of stars (29.4%) with disk-like metallicity ([Fe/H]phot0.10_{\rm phot} \sim -0.10). This metal-rich halo population lags the gaseous disk to a similar extent as the rest of the halo, indicating that it does not correspond to a canonical thick disk. Its properties are inconsistent with those of tidal debris originating from the Giant Stellar Stream merger event. Moreover, the halo is chemically distinct from the phase-mixed component previously identified along the minor axis (i.e., away from the disk), implying contributions from different formation channels. These metal-rich halo stars provide direct chemodynamical evidence in favor of the previously suggested "kicked-up'' disk population in M31's inner stellar halo.Comment: Submitted to AJ. Conclusions on page 20. 18 figures, 2 tables, 4 appendice

    Elemental abundances in M31: Individual and Coadded Spectroscopic [Fe/H] and [{\alpha}/Fe] throughout the M31 Halo with SPLASH

    Full text link
    We present spectroscopic chemical abundances of red giant branch (RGB) stars in Andromeda (M31), using medium resolution (R6000R\sim6000) spectra obtained via the Spectroscopic and Photometric Landscape of Andromeda's Stellar Halo (SPLASH) survey. In addition to individual chemical abundances, we coadd low signal-to-noise ratio (S/N) spectra of stars to obtain a high enough to measure average [Fe/H] and [α\alpha/Fe] abundances. We obtain individual and coadded measurements for [Fe/H] and [α\alpha/Fe] for M31 halo stars, covering a range of 9--180 kpc in projected radius from the center of M31. With these measurements, we greatly increase the number of outer halo (Rproj>50R_{\mathrm{proj}} > 50 kpc) M31 stars with spectroscopic [Fe/H] and [α\alpha/Fe], adding abundance measurements for 45 individual stars and 33 coadds from a pool of an additional 174 stars. We measure the spectroscopic metallicity ([Fe/H]) gradient, finding a negative radial gradient of 0.0050±0.0003-0.0050\pm0.0003 for all stars in the halo, consistent with gradient measurements obtained using photometric metallicities. Using the first measurements of [α\alpha/Fe] for M31 halo stars covering a large range of projected radii, we find a positive gradient (+0.0026±0.0004+0.0026\pm0.0004) in [α\alpha/Fe] as a function of projected radius. We also explore the distribution in [Fe/H]--[α\alpha/Fe] space as a function of projected radius for both individual and coadded measurements in the smooth halo, and compare these measurements to those stars potentially associated with substructure. These spectroscopic abundance distributions highlight the substantial evidence that M31 has had an appreciably different formation and merger history compared to our own Galaxy.Comment: Submitted to Ap

    The Eighteenth Data Release of the Sloan Digital Sky Surveys: Targeting and First Spectra from SDSS-V

    Full text link
    The eighteenth data release of the Sloan Digital Sky Surveys (SDSS) is the first one for SDSS-V, the fifth generation of the survey. SDSS-V comprises three primary scientific programs, or "Mappers": Milky Way Mapper (MWM), Black Hole Mapper (BHM), and Local Volume Mapper (LVM). This data release contains extensive targeting information for the two multi-object spectroscopy programs (MWM and BHM), including input catalogs and selection functions for their numerous scientific objectives. We describe the production of the targeting databases and their calibration- and scientifically-focused components. DR18 also includes ~25,000 new SDSS spectra and supplemental information for X-ray sources identified by eROSITA in its eFEDS field. We present updates to some of the SDSS software pipelines and preview changes anticipated for DR19. We also describe three value-added catalogs (VACs) based on SDSS-IV data that have been published since DR17, and one VAC based on the SDSS-V data in the eFEDS field.Comment: Accepted to ApJ

    The eighteenth data release of the Sloan Digital Sky Surveys : targeting and first spectra from SDSS-V

    Get PDF
    The eighteenth data release of the Sloan Digital Sky Surveys (SDSS) is the first one for SDSS-V, the fifth generation of the survey. SDSS-V comprises three primary scientific programs, or "Mappers": Milky Way Mapper (MWM), Black Hole Mapper (BHM), and Local Volume Mapper (LVM). This data release contains extensive targeting information for the two multi-object spectroscopy programs (MWM and BHM), including input catalogs and selection functions for their numerous scientific objectives. We describe the production of the targeting databases and their calibration- and scientifically-focused components. DR18 also includes ~25,000 new SDSS spectra and supplemental information for X-ray sources identified by eROSITA in its eFEDS field. We present updates to some of the SDSS software pipelines and preview changes anticipated for DR19. We also describe three value-added catalogs (VACs) based on SDSS-IV data that have been published since DR17, and one VAC based on the SDSS-V data in the eFEDS field.Publisher PDFPeer reviewe
    corecore