189 research outputs found

    Prediction of fatty acid chain length and unsaturation of milk fat by mid-infrared milk analysis1

    Get PDF
    AbstractOur objective was to develop partial least squares (PLS) models to predict fatty acid chain length and total unsaturation of milk fat directly from a mid-infrared (MIR) spectra of milk at 40°C and then determine the feasibility of using those measures as correction factors to improve the accuracy of milk fat determination. A set of 268 milks (modified milks, farm bulk tank milks, and individual cow) were analyzed for fat, true protein, and anhydrous lactose with chemical reference methods, and in addition a MIR absorption spectra was collected for each milk. Fat was extracted from another portion of each milk, the fat was saponified to produce free fatty acids, and the free fatty acids were converted to methyl esters and quantified using gas-liquid chromatography. The PLS models for predicting the average chain length (carbons per fatty acid) and unsaturation (double bonds per fatty acid) of fatty acids in the fat portion of a milk sample from a MIR milk spectra were developed and validated. The validation performance of the prediction model for chain length and unsaturation had a relative standard deviation of 0.43 and 3.3%, respectively. These measures are unique in that they are fat concentration independent characteristics of fat structure that were predicted directly with transmission MIR analysis of milk. Next, the real-time data output from the MIR spectrophotometer for fatty acid chain length and unsaturation of milk were used to correct the fat A (C=O stretch) and fat B (C–H stretch) measures to improve accuracy of fat prediction. The accuracy validation was done over a period of 5 mo with 12 sets of 10 individual farm milks that were not a part of the PLS modeling population. The correction of a traditional fat B virtual filter result (C–H stretch) for sample-to-sample variation in unsaturation reduced the Euclidean distance for predicted fat from 0.034 to 0.025. The correction of a traditional fat A virtual filter result (C=O stretch) modified with additional information on sample-to-sample variation of chain length and unsaturation gave the largest improvement (reduced Euclidean distance from 0.072 to 0.016) and the best validation accuracy (i.e., lowest Euclidean distance) of all the fat prediction methods

    Reasoning about transfinite sequences

    Full text link
    We introduce a family of temporal logics to specify the behavior of systems with Zeno behaviors. We extend linear-time temporal logic LTL to authorize models admitting Zeno sequences of actions and quantitative temporal operators indexed by ordinals replace the standard next-time and until future-time operators. Our aim is to control such systems by designing controllers that safely work on ω\omega-sequences but interact synchronously with the system in order to restrict their behaviors. We show that the satisfiability problem for the logics working on ωk\omega^k-sequences is EXPSPACE-complete when the integers are represented in binary, and PSPACE-complete with a unary representation. To do so, we substantially extend standard results about LTL by introducing a new class of succinct ordinal automata that can encode the interaction between the different quantitative temporal operators.Comment: 38 page

    Trends in the Management and Outcomes of Kidney Transplantation for Autosomal Dominant Polycystic Kidney Disease

    Get PDF
    Background. Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic disorder leading to end-stage renal failure. The objective of this study was to evaluate a longitudinal experience of kidney transplantation for ADPKD. Methods. A single center retrospective review of patients undergoing kidney transplantation was conducted, with comparisons across two time periods: early (02/2000–04/2007, n = 66) and late (04/2007–08/2012, n = 67). Results. Over the 13.5-year study period, 133 patients underwent transplantation for ADPKD. Overall, no significant difference between the early and late group with regard to intraoperative complications, need for reoperation, readmissions within 30 days, delayed graft function, and mortality was noted. There was a trend towards increase in one-year graft survival (early 93.1% versus late 100%, P = 0.05). In the early group, 67% of recipients had undergone aneurysm screening, compared to 91% of recipients in the late group (P < 0.001). Conclusions. This study demonstrates consistent clinical care with a trend towards improved rates of one-year graft survival. Interestingly, we also note a significantly higher use of cerebral imaging over time, with the majority that were detected requiring surgical intervention which may justify the current practice of nonselective radiological screening until improved screening criteria are developed

    Mechanism of Water Dynamics in Hyaluronic Dermal Fillers Revealed by Nuclear Magnetic Resonance Relaxometry

    Get PDF
    This project has received funding from the European Union’s Horizon 2020 research and innovation programme under project “IDentIFY”, grant agreement No 668119.Peer reviewedPublisher PD

    Observation of Long-Lived Muonic Hydrogen in the 2S State

    Get PDF
    The kinetic energy distribution of ground state muonic hydrogen atoms mu-p(1S) is determined from time-of-flight spectra measured at 4, 16, and 64 hPa H2 room-temperature gas. A 0.9 keV-component is discovered and attributed to radiationless deexcitation of long-lived mu-p(2S) atoms in collisions with H2 molecules. The analysis reveals a relative population of about 1%, and a pressure-dependent lifetime (e.g. (30.4 +21.4 -9.7) ns at 64 hPa) of the long-lived mu-p(2S) population, equivalent to a 2S-quench rate in mu-p(2S) + H2 collisions of (4.4 +2.1 -1.8) 10^11 s^-1 at liquid hydrogen density.Comment: 4 pages, 2 figures, accepted for publication in Physical Review Letter

    Slow dynamics of solid proteins : Nuclear Magnetic Resonance relaxometry versus Dielectric Spectroscopy

    Get PDF
    Acknowledgement This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 668119 (project “IDentIFY”).Peer reviewedPublisher PD

    Bim/Bcl-2 balance is critical for maintaining naive and memory T cell homeostasis

    Get PDF
    We examined the role of the antiapoptotic molecule Bcl-2 in combating the proapoptotic molecule Bim in control of naive and memory T cell homeostasis using Bcl-2−/− mice that were additionally deficient in one or both alleles of Bim. Naive T cells were significantly decreased in Bim+/−Bcl-2−/− mice, but were largely restored in Bim−/−Bcl-2−/− mice. Similarly, a synthetic Bcl-2 inhibitor killed wild-type, but not Bim−/−, T cells. Further, T cells from Bim+/−Bcl-2−/− mice died rapidly ex vivo and were refractory to cytokine-driven survival in vitro. In vivo, naive CD8+ T cells required Bcl-2 to combat Bim to maintain peripheral survival, whereas naive CD4+ T cells did not. In contrast, Bim+/−Bcl-2−/− mice generated relatively normal numbers of memory T cells after lymphocytic choriomeningitis virus infection. Accumulation of memory T cells in Bim+/−Bcl-2−/− mice was likely caused by their increased proliferative renewal because of the lymphopenic environment of the mice. Collectively, these data demonstrate a critical role for a balance between Bim and Bcl-2 in controlling homeostasis of naive and memory T cells

    2,2′-[(Propane-1,3-diyldinitrilo)bis­(phenyl­methyl­idyne)]diphenol

    Get PDF
    In the title mol­ecule, C29H26N2O2, there are two strong intra­molecular O—H⋯N hydrogen bonds involving the hydr­oxy and imine groups, forming S(6) ring motifs. The dihedral angles between adjacent phenyl rings and phenol-containing planes are 85.27 (19) and 91.38 (18)°. In the crystal structure, weak inter­molecular C—H⋯O hydrogen bonds connect mol­ecules into a two-dimensional network

    N,N′-Bis[(2-hydroxy­phen­yl)(phen­yl)methyl­idene]propane-1,2-diamine

    Get PDF
    In the the title compound, C29H26N2O2, two strong intra­molecular O—H⋯N hydrogen bonds involving the hydr­oxy and imine groups generate S(6) ring motifs. The dihedral angles between the pairs of terminal benzene rings are 89.8 (2) and 87.8 (2)°

    Multiplexed Electrochemical Detection of Yersinia Pestis and Staphylococcal Enterotoxin B using an Antibody Microarray

    Get PDF
    The CombiMatrix antibody microarray is a versatile, sensitive detection platform based on the generation and transduction of electrochemical signals following antigen binding to surface antibodies. The sensor chip described herein is comprised of microelectrodes coupled to an adjacent bio-friendly matrix coated with antibodies to the biological pathogens Yersinia pestis and Bacillus anthracis, and the bacterial toxin staphylococcal enterotoxin B (SEB). Using this system, we were able to detect SEB and inactivated Y. pestis individually as well as in two-plex assays at concentrations as low as 5 pg/mL and 106 CFU/mL, respectively. We also introduce super avidin-biotin system (SABS) as a viable and effective means to enhance assay signal responses and lower detection limits. Together these technologies represent substantial advances in point-of-care and point-of-use detection applications
    corecore