15 research outputs found

    The Role of Neuropeptide B and Its Receptors in Controlling Appetite, Metabolism, and Energy Homeostasis

    No full text
    Neuropeptide B (NPB) is a peptide hormone that was initially described in 2002. In humans, the biological effects of NPB depend on the activation of two G protein-coupled receptors, NPBWR1 (GPR7) and NPBWR2 (GPR8), and, in rodents, NPBWR1. NPB and its receptors are expressed in the central nervous system (CNS) and in peripheral tissues. NPB is also present in the circulation. In the CNS, NPB modulates appetite, reproduction, pain, anxiety, and emotions. In the peripheral tissues, NPB controls secretion of adrenal hormones, pancreatic beta cells, and various functions of adipose tissue. Experimental downregulation of either NPB or NPBWR1 leads to adiposity. Here, we review the literature with regard to NPB-dependent control of metabolism and energy homeostasis

    Gh and igf-i increase leptin receptor expression in prepubertal pig ovaries: The role of leptin in steroid secretion and cell apoptosis

    No full text
    Leptin (L) is recognised as an important regulator of puberty and a factor which controls reproduction. Whole pig ovarian follicles were incubated with different doses of leptin (2, 20 and 200 ng/ml) added alone or in combination with 100 ng/ml of GH or 50 ng/ml of IGF-I. The expression of the functional long form leptin receptor (Ob-Rb) mRNA was examined by semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) in follicular cells cultured with GH or IGF-I. Both GH and IGF-I increased leptin receptor expression in prepubertal pig ovaries. In separate experiments, the action of leptin on ovarian follicular steroidogenesis and cell apoptosis was examined. After 24 h of incubation with leptin alone or in combination with GH or IGF-I, oestradiol (E2) levels were determined in the culture medium while follicular tissue was used for the estimation of caspase-3 activity. Leptin increased E2 secretion and significantly diminished caspase-3 activity at all doses used. Both GH and IGF-I stimulated oestradiol secretion and decreased caspase-3 activity. No differences were demonstrable in oestradiol secretion and caspase-3 activity between cells treated with GH plus leptin and GH alone or cells treated with IGF-I plus leptin as compared to cultures treated with GH or IGF-I alone. However, GH diminished leptin-stimulated oestradiol secretion while IGF-I was without effect on it. Both GH and IGF-I reversed the anti-apoptotic action of leptin. In conclusion, we infer that (1) leptin directly affects ovarian function in prepubertal animals by its action on oestradiol secretion and cell apoptosis, (2) GH and IGF-I modulate the action of leptin, and (3) at least in part, the direct effect of GH/IGF-I on leptin production is due to an action on leptin receptor expression

    Adropin Slightly Modulates Lipolysis, Lipogenesis and Expression of Adipokines but Not Glucose Uptake in Rodent Adipocytes

    No full text
    Adropin is a peptide hormone which modulates energy homeostasis and metabolism. In animals with diet-induced obesity, adropin attenuates adiposity and improves lipid and glucose homeostasis. Adropin promotes the proliferation of rodent white preadipocytes and suppresses their differentiation into adipocytes. By contrast, the effects of adropin on mature white adipocytes are unknown. Therefore, we aimed to evaluate the effects of adropin on lipolysis, lipogenesis and glucose uptake in white rodent adipocytes. We assessed the effects of adropin on the mRNA expression of adiponectin, resistin and visfatin. White preadipocytes were isolated from male Wistar rats. Differentiated 3T3-L1 cells were used as a surrogate model of white adipocytes. Lipolysis was measured by the evaluation of glycerol and free fatty acid secretion using colorimetric kits. The effects of adropin on lipogenesis and glucose uptake were measured using radioactive-labelled glucose. The expression of adipokine mRNA was studied using real-time PCR. Our results show that adropin slightly promotes lipolysis in rat adipocytes and 3T3-L1 cells. Adropin suppresses lipogenesis in rat adipocytes without influencing glucose uptake. In addition, adropin stimulates adiponectin mRNA expression and suppresses the expression of resistin and visfatin. These results indicate that adropin may be involved in controlling lipid metabolism and adipokine expression in white rodent adipocytes

    GIP_HUMAN [22–51] Peptide Encoded by the Glucose-Dependent Insulinotropic Polypeptide (GIP) Gene Suppresses Insulin Expression and Secretion in INS-1E Cells and Rat Pancreatic Islets

    No full text
    GIP_HUMAN [22–51] is a recently discovered peptide that shares the same precursor molecule with glucose-dependent insulinotropic polypeptide (GIP). In vivo, chronic infusion of GIP_HUMAN [22–51] in ApoE−/− mice enhanced the development of aortic atherosclerotic lesions and upregulated inflammatory and proatherogenic proteins. In the present study, we evaluate the effects of GIP_HUMAN [22–51] on insulin mRNA expression and secretion in insulin-producing INS-1E cells and isolated rat pancreatic islets. Furthermore, we characterize the influence of GIP_HUMAN [22–51] on cell proliferation and death and on Nf-kB nuclear translocation. Rat insulin-producing INS-1E cells and pancreatic islets, isolated from male Wistar rats, were used in this study. Gene expression was evaluated using real-time PCR. Cell proliferation was studied using a BrdU incorporation assay. Cell death was quantified by evaluating histone-complexed DNA fragments. Insulin secretion was determined using an ELISA test. Nf-kB nuclear translocation was detected using immunofluorescence. GIP_HUMAN [22–51] suppressed insulin (Ins1 and Ins2) in INS-1E cells and pancreatic islets. Moreover, GIP_HUMAN [22–51] promoted the translocation of NF-κB from cytoplasm to the nucleus. In the presence of a pharmacological inhibitor of NF-κB, GIP_HUMAN [22–51] was unable to suppress Ins2 mRNA expression. Moreover, GIP_HUMAN [22–51] downregulated insulin secretion at low (2.8 mmol/L) but not high (16.7 mmol/L) glucose concentration. By contrast, GIP_HUMAN [22–51] failed to affect cell proliferation and apoptosis. We conclude that GIP_HUMAN [22–51] suppresses insulin expression and secretion in pancreatic β cells without affecting β cell proliferation or apoptosis. Notably, the effects of GIP_HUMAN [22–51] on insulin secretion are glucose-dependent

    Daily Treatment of Mice with Type 2 Diabetes with Adropin for Four Weeks Improves Glucolipid Profile, Reduces Hepatic Lipid Content and Restores Elevated Hepatic Enzymes in Serum

    No full text
    Adropin is a peptide hormone encoded by Energy Homeostasis Associated gene. Adropin modulates energy homeostasis and metabolism of lipids and carbohydrates. There is growing evidence demonstrating that adropin enhances insulin sensitivity and lowers hyperlipidemia in obese mice. The aim of this study was to investigate the effects of daily administration of adropin for four weeks in mice with experimentally induced type 2 diabetes (T2D). Adropin improved glucose control without modulating insulin sensitivity. Adropin reduced body weight, size of adipocytes, blood levels of triacylglycerol and cholesterol in T2D mice. T2D mice treated with adropin had lower liver mass, reduced hepatic content of triacylglycerol and cholesterol. Furthermore, adropin attenuated elevated blood levels of hepatic enzymes (ALT, AST, GGT and ALP) in T2D mice. In T2D mice, adropin increased the circulating adiponectin level. Adropin had no effects on circulating insulin and glucagon levels and did not alter pancreatic islets morphology. These results suggest that adropin improves glucose control, lipid metabolism and liver functions in T2D. In conjunction with reduced lipid content in hepatocytes, these results render adropin as an interesting candidate in therapy of T2D
    corecore