67 research outputs found

    Drosophila SOCS Proteins

    Get PDF
    The importance of signal transduction cascades such as the EGFR and JAK/STAT pathways for development and homeostasis is highlighted by the high levels of molecular conservation maintained between organisms as evolutionary diverged as fruit flies and humans. This conservation is also mirrored in many of the regulatory mechanisms that control the extent and duration of signalling in vivo. One group of proteins that represent important physiological regulators of both EGFR and JAK/STAT signalling is the members of the SOCS family. Only 3 SOCS-like proteins are encoded by the Drosophila genome, and despite this low complexity, Drosophila SOCS proteins share many similarities to their human homologues. SOCS36E is both a target gene and negative regulator of JAK/STAT signalling while SOCS44A and SOCS36E represent positive and negative regulators of EGFR signalling. Here we review our current understanding of Drosophila SOCS proteins, their roles in vivo, and future approaches to elucidating their functions

    Di-, tri- and tetra-5'-O-phosphorothioadenosyl substituted polyols as inhibitors of Fhit: Importance of the α-β bridging oxygen and β phosphorus replacement

    Get PDF
    BACKGROUND: The human FHIT gene is inactivated early in the development of many human cancers and loss of Fhit in mouse predisposes to cancer while reintroduction of FHIT suppresses tumor formation via induction of apoptosis. Fhit protein, a diadenosine polyphosphate hydrolase, does not require hydrolase activity to function in tumor suppression and may signal for apoptosis as an enzyme-substrate complex. Thus, high affinity nonhydrolyzable substrate analogs may either promote or antagonize Fhit function, depending on their features, in Fhit + cells. Previously synthesized analogs with phosphorothioadenosyl substitutions and "supercharged" branches do not bind better than natural substrates and thus have limited potential as cellular probes. RESULTS: Here we link adenosine 5'-O-phosphates and phosphorothioates to short-chain polyols to generate a series of substrate analogs. We obtain structure-activity data in the form of in vitro Fhit inhibition for four types of analog substitutions and describe two compounds, inhibitory constants for which are 65 and 75-fold lower than natural substrates. CONCLUSIONS: The best Fhit inhibitors obtained to date separate two or more 5'-O-phosphoromonothioadenosyl moieties with as many bond lengths as in AppppA, maintain oxygen at the location of the α-β bridging oxygen, and replace carbon for the β phosphorus

    Cyclic nucleotide specificity of the activator and catalytic sites of a cGMP-stimulated cGMP phosphodiesterase from Dictyostelium discoideum

    Get PDF
    The cellular slime mold Dictyostelium discoideum has an intracellular phosphodiesterase which specifically hydrolyzes cGMP. The enzyme is activated by low cGMP concentrations, and is involved in the reduction of chemoattractant-mediated elevations of cGMP levels. The interaction of 20 cGMP derivatives with the activator site and with the catalytic site of the enzyme has been investigated. Binding of cGMP to the activator site is strongly reduced (more than 80-fold) if cGMP is no longer able to form a hydrogen bond at N2H2 or O2’H. Modifications at N7, C8, O3’ and O5’ induce only a small reduction of binding affinity. A cyclic phosphate structure, as well as a negatively charged oxygen atom at phosphorus, are essential to obtain activation of the enzyme. Substitution of the axial exocyclic oxygen atom by sulphur is tolerated; modification of the equatorial oxygen atom reduces the binding activity of cGMP to the activator site by 90-fold. Binding of cGMP to the catalytic site is strongly reduced if cGMP is modified at N1H, C6O, C8 and O3’, while modifications at N2H2, N3, N7, O2’H, and O5’ have minor effects. Both exocyclic oxygen atoms are important to obtain binding of cGMP to the catalytic site. The results indicate that activation of the enzyme by cGMP and hydrolysis of cGMP occur at different sites of the enzyme. cGMP is recognized at these sites by different types of molecular interaction between cGMP and the protein. cGMP derivatives at concentrations which saturate the activator site do not induce the same degree of activation of the enzyme (activation 2.3-6.6-fold). The binding affinities of the analogues for the activator site and their maximal activation are not correlated. Our results suggest that the enzyme is activated because cGMP bound to the activator site stabilizes a state of the enzyme which has a higher affinity for cGMP at the catalytic site.

    Oligo(nucleoside Phosphorothioate)s: The Quest of P-Chirality

    No full text
    corecore