3 research outputs found
Caco-2 cell permeability of flavonoids and saponins from Gynostemma pentaphyllum : the immortal herb
Gynostemma pentaphyllum (the immortal herb) has been an important component of Chinese Traditional Medicine for millennia. Recent clinical studies have revealed that the plant exhibits numerous beneficial biological activities, making it of interest to the pharmaceutical industry. An extract of the herb contains over 200 individual secondary metabolites including flavonol glycosides and dammarane saponins. To focus attention on the compounds most likely to be responsible for the biological activities, this study predicts the potential oral bioavailability of nine dammarane saponins and five flavonol glycosides from G. pentaphyllum using the Caco-2 cell monolayer permeability model. Two flavonoids, 8 and 9, and four saponins, 10, 11, 12, and 14, exhibited high permeability across the monolayers. The results indicated that a higher degree of glycosylation-facilitated permeability, suggestive of active transport. This study demonstrates the utility of the Caco-2 permeability assay as a method of identifying possible bioavailable compounds from medicinal herbal extracts
Synergistic anti-inflammatory activity of ginger and turmeric extracts in inhibiting lipopolysaccharide and interferon-γ-induced proinflammatory mediators
This study aims to investigate the combined anti-inflammatory activity of ginger and turmeric extracts. By comparing the activities of individual and combined extracts in lipopolysaccharide and interferon-gamma-induced murine RAW 264.7 cells, we demonstrated that ginger-turmeric combination was optimal at a specific ratio (5:2, w/w) in inhibiting nitric oxide, tumour necrosis factor and interleukin 6 with synergistic interaction (combination index < 1). The synergistic inhibitory effect on TNF was confirmed in human monocyte THP-1 cells. Ginger-turmeric combination (5:2, w/w) also upregulated nuclear factor erythroid 2-related factor 2 activity and heme oxygenase-1 protein expression. Additionally, 6-shogaol, 8-shogaol, 10-shogaol and curcumin were the leading compounds in reducing major proinflammatory mediators and cytokines, and a simplified compound combination of 6-s, 10-s and curcumin showed the greatest potency in reducing LPS-induced NO production. Our study provides scientific evidence in support of the combined use of ginger and turmeric to alleviate inflammatory processes
Synergistic inhibition of pro-inflammatory pathways by ginger and turmeric extracts in RAW 264.7 cells
Synergy plays a prominent role in herbal medicines to increase potency and widen the therapeutic windows. The mechanism of synergy in herbal medicines is often associated with multi-targeted behavior and complex signaling pathways which are challenging to elucidate. This study aims to investigate the synergistic mechanism of a combination (GT) of ginger (G) and turmeric (T) extracts by exploring the modulatory activity in lipopolysaccharides (LPS)-induced inflammatory pathways and key molecular targets. A Bioplex ProTM mouse cytokine 23-plex assay was utilized to assess the broad anti-cytokine activity of GT in LPS and interferon (IFN)-gamma (both at 50 ng/mL)-activated RAW 264.7 cells. The inhibitory effects of individual and combined G and T on major proinflammatory mediators including nitric oxide (NO), tumor necrosis factor (TNF) and interleukin (IL)-6 were tested using Griess reagents and ELISA assays, respectively. Immunofluorescent staining and Western blot were used to investigate the modulatory effect of GT on key proteins in the LPS/TLR4 signaling transduction. The regulation of murine microRNA miR-155-5p was tested using real-time PCR. The IC50 value and combination index (CI) values were used to demonstrate potency and synergistic interaction, respectively. GT synergistically attenuated a range of pro-inflammatory mediators including inducible NO, major cytokines (TNF and IL-6) and secondary inflammatory cytokines (GM-CSF and MCP-1). GT significantly inhibited LPS-induced NF-kB p65 translocation, the activation of TLR4, TRAF6, and phosphorylation of JNK and c-JUN. Moreover, the suppressive effect of GT on each of the protein targets in this axis was stronger than that of the individual components. Real-time PCR analysis showed that GT suppressed miR-155-5p to a greater extent than G or T alone in LPS-stimulated cells. Our study demonstrates the synergistic mechanism of GT in downregulating LPS-induced proinflammatory pathways at the miRNA and protein levels. Our results establish a scientific basis for the combined application of G and T as an advanced therapeutic candidate in inflammatory diseases with broad and synergistic anti-inflammatory activity and multi-targeted mechanisms