938 research outputs found

    Geometry for the accelerating universe

    Get PDF
    The Lorentzian spacetime metric is replaced by an area metric which naturally emerges as a generalized geometry in quantum string and gauge theory. Employing the area metric curvature scalar, the gravitational Einstein-Hilbert action is re-interpreted as dynamics for an area metric. Without the need for dark energy or fine-tuning, area metric cosmology explains the observed small acceleration of the late Universe.Comment: 4 pages, 1 figur

    Quantum Phase Transitions in the Itinerant Ferromagnet ZrZn2_2

    Full text link
    We report a study of the ferromagnetism of ZrZn2_{2}, the most promising material to exhibit ferromagnetic quantum criticality, at low temperatures TT as function of pressure pp. We find that the ordered ferromagnetic moment disappears discontinuously at pcp_c=16.5 kbar. Thus a tricritical point separates a line of first order ferromagnetic transitions from second order (continuous) transitions at higher temperature. We also identify two lines of transitions of the magnetisation isotherms up to 12 T in the pTp-T plane where the derivative of the magnetization changes rapidly. These quantum phase transitions (QPT) establish a high sensitivity to local minima in the free energy in ZrZn2_{2}, thus strongly suggesting that QPT in itinerant ferromagnets are always first order

    Reflection-Free One-Way Edge Modes in a Gyromagnetic Photonic Crystal

    Full text link
    We point out that electromagnetic one-way edge modes analogous to quantum Hall edge states, originally predicted by Raghu and Haldane in 2D gyroelectric photonic crystals possessing Dirac point-derived bandgaps, can appear in more general settings. In particular, we show that the TM modes in a gyromagnetic photonic crystal can be formally mapped to electronic wavefunctions in a periodic electromagnetic field, so that the only requirement for the existence of one-way edge modes is that the Chern number for all bands below a gap is non-zero. In a square-lattice gyromagnetic Yttrium-Iron-Garnet photonic crystal operating at microwave frequencies, which lacks Dirac points, time-reversal breaking is strong enough that the effect should be easily observable. For realistic material parameters, the edge modes occupy a 10% band gap. Numerical simulations of a one-way waveguide incorporating this crystal show 100% transmission across strong defects, such as perfect conductors several lattice constants wide, larger than the width of the waveguide.Comment: 4 pages, 3 figures (Figs. 1 and 2 revised.

    Eddington-Born-Infeld action for dark energy and dark matter

    Full text link
    We argue that Einstein gravity coupled to a Born-Infeld theory provides an attractive candidate to represent dark matter and dark energy. For cosmological models, the Born-Infeld field has an equation of state which interpolates between matter, w=0 (small times), and a cosmological constant w=-1 (large times). On galactic scales, the Born-Infeld field predicts asymptotically flat rotation curves.Comment: A sign mistake in section on galactic scales is pointed out. This sign invalidates the content of that section. See comment on manuscrip

    The `s-rule' exclusion principle and vacuum interpolation in worldvolume dynamics

    Get PDF
    We show how the worldvolume realization of the Hanany-Witten effect for a supersymmetric D5-brane in a D3 background also provides a classical realization of the `s-rule' exclusion principle. Despite the supersymmetry, the force on the D5-brane vanishes only in the D5 `ground state', which is shown to interpolate between 6-dimensional Minkowski space and an OSp(44)OSp(4^*|4)-invariant adS2×S4adS_2\times S^4 geometry. The M-theory analogue of these results is briefly discussed.Comment: 25 pages, 9 figures, LaTeX JHEP styl

    Multiple first-order metamagnetic transitions and quantum oscillations in ultrapure

    Get PDF
    We present measurements on ultra clean single crystals of the bilayered ruthenate metal Sr3Ru2O7, which has a magnetic-field-tuned quantum critical point. Quantum oscillations of differing frequencies can be seen in the resistivity both below and above its metamagnetic transition. This frequency shift corresponds to a small change in the Fermi surface volume that is qualitatively consistent with the small moment change in the magnetisation across the metamagnetic transition. Very near the metamagnetic field, unusual behaviour is seen. There is a strong enhancement of the resistivity in a narrow field window, with a minimum in the resistivity as a function of temperature below 1 K that becomes more pronounced as the disorder level decreases. The region of anomalous behaviour is bounded at low temperatures by two first-order phase transitions. The implications of the results are discussed. PACS: 68.35.Rh, 71.27.+a, 72.15.-v, 74.70.PqComment: 12 pages 4 figures, submitte

    Cosmology as Geodesic Motion

    Full text link
    For gravity coupled to N scalar fields with arbitrary potential V, it is shown that all flat (homogeneous and isotropic) cosmologies correspond to geodesics in an (N+1)-dimensional `augmented' target space of Lorentzian signature (1,N), timelike if V>0, null if V=0 and spacelike if V<0. Accelerating cosmologies correspond to timelike geodesics that lie within an `acceleration subcone' of the `lightcone'. Non-flat (k=-1,+1) cosmologies are shown to evolve as projections of geodesic motion in a space of dimension (N+2), of signature (1,N+1) for k=-1 and signature (2,N) for k=+1. This formalism is illustrated by cosmological solutions of models with an exponential potential, which are comprehensively analysed; the late-time behviour for other potentials of current interest is deduced by comparison.Comment: 26 pages, 2 figures, journal version with additional reference

    Gravity a la Born-Infeld

    Full text link
    A simple technique for the construction of gravity theories in Born-Infeld style is presented, and the properties of some of these novel theories are investigated. They regularize the positive energy Schwarzschild singularity, and a large class of models allows for the cancellation of ghosts. The possible correspondence to low energy string theory is discussed. By including curvature corrections to all orders in alpha', the new theories nicely illustrate a mechanism that string theory might use to regularize gravitational singularities.Comment: 21 pages, 2 figures, new appendix B with corrigendum: Class. Quantum Grav. 21 (2004) 529

    Performance of a diagnostic algorithm for fibrotic hypersensitivity pneumonitis. A case-control study.

    Get PDF
    The differential diagnosis fibrotic hypersensitivity pneumonitis (HP) versus idiopathic pulmonary fibrosis (IPF) is important but challenging. Recent diagnostic guidelines for HP emphasize including multidisciplinary discussion (MDD) in the diagnostic process, however MDD is not comprehensively available. We aimed to establish the diagnostic accuracy and prognostic validity of a previously proposed HP diagnostic algorithm that foregoes MDD. We tested the algorithm in patients with an MDD diagnosis of fibrotic HP or IPF (case control study) and determined diagnostic test performances for diagnostic confidences of ≥ 90% and ≥ 70%. Prognostic validity was established using Cox proportional hazards models. Thirty-one patients with fibrotic HP and 50 IPF patients were included. The algorithm-derived ≥ 90% confidence level for HP had high specificity (0.94, 95% confidence interval [CI] 0.83-0.99), but low sensitivity (0.35 [95%CI 0.19-0.55], J-index 0.29). Test performance was improved for the ≥ 70% confidence level (J-index 0.64) with a specificity of 0.90 (95%CI 0.78-0.97), and a sensitivity of 0.74 (95%CI 0.55-0.88). MDD fibrotic HP diagnosis was strongly associated with lower risk of death (adjusted hazard ratio [HR] 0.10 [0.01-0.92], p = 0.04), whereas the algorithm-derived ≥ 70% and ≥ 90% confidence diagnoses were not significantly associated with survival (adjusted HR 0.37 [0.07-1.80], p = 0.22, and adjusted HR 0.41 [0.05-3.25], p = 0.39, respectively). The algorithm-derived ≥ 70% diagnostic confidence had satisfactory test performance for MDD-HP diagnosis, with insufficient sensitivity for ≥ 90% confidence. The lowest risk of death in the MDD-derived HP diagnosis validates the reference standard and suggests that a diagnostic algorithm not including MDD, might not replace the latter

    Electron Transport through Disordered Domain Walls: Coherent and Incoherent Regimes

    Full text link
    We study electron transport through a domain wall in a ferromagnetic nanowire subject to spin-dependent scattering. A scattering matrix formalism is developed to address both coherent and incoherent transport properties. The coherent case corresponds to elastic scattering by static defects, which is dominant at low temperatures, while the incoherent case provides a phenomenological description of the inelastic scattering present in real physical systems at room temperature. It is found that disorder scattering increases the amount of spin-mixing of transmitted electrons, reducing the adiabaticity. This leads, in the incoherent case, to a reduction of conductance through the domain wall as compared to a uniformly magnetized region which is similar to the giant magnetoresistance effect. In the coherent case, a reduction of weak localization, together with a suppression of spin-reversing scattering amplitudes, leads to an enhancement of conductance due to the domain wall in the regime of strong disorder. The total effect of a domain wall on the conductance of a nanowire is studied by incorporating the disordered regions on either side of the wall. It is found that spin-dependent scattering in these regions increases the domain wall magnetoconductance as compared to the effect found by considering only the scattering inside the wall. This increase is most dramatic in the narrow wall limit, but remains significant for wide walls.Comment: 23 pages, 12 figure
    corecore