298 research outputs found

    Quantitation of aflatoxin B1 adduction within the ribosomal RNA gene sequences of rat liver DNA.

    Full text link

    Infection, inflammation and colon carcinogenesis

    Get PDF
    The importance of chronic inflammation as a risk factor for major cancers is well documented [1], and the inflammatory state is known to involve contributions of both adaptive and innate immune components. In a recent publication [2] we describe an experimental animal model in which infection, inflammation and cancer are mechanistically linked, and provide evidence that chemical mediators of the innate immune system and bacterial toxins both play key roles in driving colon carcinogenesis. In this model, epithelial injury caused by Helicobacter hepaticus infection enhances access of bacterially-associated products to pattern-recognition receptors located on surfaces of macrophages and dendritic cells. Receptor ligation leads to activation of transcription factors, including NF-kappa B, that regulate production of chemo-attractants for macrophages and neutrophils, recruitment of which is a hallmark of inflammation. These acute inflammatory events are re-enforced by expression of powerful inflammatory mediators such as TNF-α and IL-2, which amplify acute inflammatory gene expression and enhance cell survival. If not properly extinguished, the innate inflammatory response is maintained and further amplified by activation of cell-mediated adaptive immunity

    Chemistry meets biology in colitis-associated carcinogenesis

    Get PDF
    The intestine comprises an exceptional venue for a dynamic and complex interplay of numerous chemical and biological processes. Here, multiple chemical and biological systems, including the intestinal tissue itself, its associated immune system, the gut microbiota, xenobiotics, and metabolites meet and interact to form a sophisticated and tightly regulated state of tissue homoeostasis. Disturbance of this homeostasis can cause inflammatory bowel disease (IBD)—a chronic disease of multifactorial etiology that is strongly associated with increased risk for cancer development. This review addresses recent developments in research into chemical and biological mechanisms underlying the etiology of inflammation-induced colon cancer. Beginning with a general overview of reactive chemical species generated during colonic inflammation, the mechanistic interplay between chemical and biological mediators of inflammation, the role of genetic toxicology, and microbial pathogenesis in disease development are discussed. When possible, we systematically compare evidence from studies utilizing human IBD patients with experimental investigations in mice. The comparison reveals that many strong pathological and mechanistic correlates exist between mouse models of colitis-associated cancer, and the clinically relevant situation in humans. We also summarize several emerging issues in the field, such as the carcinogenic potential of novel inflammation-related DNA adducts and genotoxic microbial factors, the systemic dimension of inflammation-induced genotoxicity, and the complex role of genome maintenance mechanisms during these processes. Taken together, current evidence points to the induction of genetic and epigenetic alterations by chemical and biological inflammatory stimuli ultimately leading to cancer formation.Massachusetts Institute of Technology. Center for Environmental Health Sciences (ES002109)National Institutes of Health (U.S.) (NIH (CA26731)

    Sulforaphane, a cancer chemopreventive agent, induces pathways associated with membrane biosynthesis in response to tissue damage by aflatoxin B1

    Get PDF
    Aflatoxin B[subscript 1] (AFB[subscript 1]) is one of the major risk factors for liver cancer globally. A recent study showed that sulforaphane (SF), a potent inducer of phase II enzymes that occurs naturally in widely consumed vegetables, effectively induces hepatic glutathione S-transferases (GSTs) and reduces levels of hepatic AFB[subscript 1]-DNA adducts in AFB[subscript 1]-exposed Sprague Dawley rats. The present study characterized the effects of SF pre-treatment on global gene expression in the livers of similarly treated male rats. Combined treatment with AFB[subscript 1] and SF caused reprogramming of a network of genes involved in signal transduction and transcription. Changes in gene regulation were observable 4 h after AFB[subscript 1] administration in SF-pretreated animals and may reflect regeneration of cells in the wake of AFB[subscript 1]-induced hepatotoxicity. At 24 h after AFB[subscript 1] administration, significant induction of genes that play roles in cellular lipid metabolism and acetyl-CoA biosynthesis was detected in SF-pretreated AFB[subscript 1]-dosed rats. Induction of this group of genes may indicate a metabolic shift toward glycolysis and fatty acid synthesis to generate and maintain pools of intermediate molecules required for tissue repair, cell growth and compensatory hepatic cell proliferation. Collectively, gene expression data from this study provide insights into molecular mechanisms underlying the protective effects of SF against AFB[subscript 1] hepatotoxicity and hepatocarcinogenicity, in addition to the chemopreventive activity of this compound as a GST inducer.National Institutes of Health (U.S.) (Grants ES016313, P30-ES002109, P01 ES006052, P30 ES003819, and P30 CA006973
    • …
    corecore