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Abstract 

The intestine comprises an exceptional venue for a dynamic and complex interplay of 

numerous chemical and biological processes.  Here, multiple chemical and biological systems, 

including the intestinal tissue itself, its associated immune system, the gut microbiota, 

xenobiotics, and metabolites meet and interact to form a sophisticated and tightly regulated state 

of tissue homoeostasis.  Disturbance of this homeostasis can cause inflammatory bowel disease 

(IBD) – a chronic disease of multifactorial etiology that is strongly associated with increased risk 

for cancer development.  This review addresses recent developments in research into chemical 

and biological mechanisms underlying the etiology of inflammation-induced colon cancer.  

Beginning with a general overview of reactive chemical species generated during colonic 

inflammation, the mechanistic interplay between chemical and biological mediators of 

inflammation, the role of genetic toxicology and microbial pathogenesis in disease development 

are discussed.  When possible, we systematically compare evidence from studies utilizing human 

IBD patients with experimental investigations in mice.  The comparison reveals that many strong 

pathological and mechanistic correlates exist between mouse models of colitis-associated cancer, 

and the clinically relevant situation in humans.  We also summarize several emerging issues in 

the field, such as the carcinogenic potential of novel inflammation-related DNA adducts and 

genotoxic microbial factors, the systemic dimension of inflammation-induced genotoxicity, and 

the complex role of genome maintenance mechanisms during these processes.  Taken together, 

current evidence points to the induction of genetic and epigenetic alterations by chemical and 

biological inflammatory stimuli ultimately leading to cancer formation. 
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1 Introduction: inflammatory bowel disease and colon cancer 

With respect to a functional interplay between chemistry and biology, the intestinal tract is 

one of the most complex organs in the body.  In the intestine, local epithelial cells closely interact 

with the body’s immune system and meet with a complex bacterial microflora and a plethora of 

endogenous metabolites and xenobiotic substances.  All of these factors need to be tightly 

balanced to ensure intestinal homeostasis and to guarantee efficient uptake of nutrients and 

excretion of metabolites.  If this balance is disturbed, pathological states can appear, such as 

inflammatory bowel disease (IBD).  As a major risk factor for colon cancer, IBD entails chronic, 

relapsing inflammation of the gastrointestinal tract that affects millions of people worldwide, 

with >1 million new patients each year in the US alone [1].  The paucity of safe and effective 

therapies for IBD amplifies its public health impact and motivates the hunt for the molecular 

etiology of the disease and the mechanisms linking colitis with colon carcinogenesis.  This 

review addresses recent developments in chemical and biological mechanisms underlying 

inflammation-induced colon cancer, starting with a general overview of the reactive chemical 

species generated during colonic inflammation followed by a discussion of the mechanistic 

interplay between chemical and biological mediators of inflammation and the role of microbial 

pathogenesis and genetic toxicology in the etiology of inflammation-induced colon cancer.  The 

reader is referred to several recent reviews of molecular aspects of IBD and cancer development 

not covered here, in particular immunological and genetic studies [1-7]. 

1.1 Inflammatory bowel disease: Crohn’s disease and ulcerative colitis 

Inflammatory bowel disease comes in two distinct forms: Crohn’s disease and ulcerative 

colitis.  In Crohn’s disease, inflammation often affects the entire thickness of the bowel wall and 

affects mainly the ileum and colon, but can discontinuously spread throughout any part of the 

intestine.  In contrast, the inflammation in ulcerative colitis is usually confined to the mucosal 

surface of the intestines and limited to colon and rectum, spreading in a continuous fashion 

(reviewed in [1]).  The pathophysiology of IBD is multifactorial, with contributions from genetic, 

epigenetic, environmental, and endogenous microbial factors (reviewed in [3,8]).  Genetic 

background is an important determinant for IBD, evidenced by the fact that family history is a 

risk factor for disease development with a concordance rate in monozygotic twins of 10-15% in 

ulcerative colitis and 30-35% in Crohn’s disease.  At present, more than 150 genetic loci have 

been associated with disease development [9].  IBD-associated genes are involved in several 
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disease-relevant pathways crucial for intestinal homeostasis, including epithelial barrier function, 

microbial defense mechanisms, regulation of immunity, autophagy, generation of reactive oxygen 

and nitrogen species (ROS, RNS) and signaling functions.  About 30% of these loci are shared 

between ulcerative colitis and Crohn’s disease, so the two pathological states share some similar 

molecular mechanisms, but also exhibit many disease-specific features [3,9].  The contribution of 

environmental factors is not well understood, but evidence indicates that they play a significant 

role, as suggested by the high prevalence of IBD in industrialized countries.  This pattern of high 

prevalence appears not to be related to genetic factors, since migrant studies have demonstrated 

that individuals relocating from a region with low prevalence to one of high prevalence are at 

increased risk of developing IBD [10].  Environmental influences include life-style factors such 

as smoking and dietary composition among others, but elevated IBD prevalence may also be 

related to improved sanitation and hygiene.  The latter is based on the hypothesis that lack of 

childhood exposure to enteric pathogens may lead to inappropriate immune responses to new 

antigens in adulthood and an imbalance in host-microbe interaction, which play an important role 

in the maintenance of mucosal homeostasis [10].  An imbalance of host-microbe homeostasis is 

of paramount importance in the etiology of IBD, supported by the fact that some IBD patients 

benefit from antibiotic treatment and most mouse models of IBD require the presence of 

intestinal bacteria to develop colitis [1].  Furthermore, an altered immune response to the 

intestinal flora plays a pivotal role in the etiology of IBD [8].  Notably, the intestine and its 

associated tissues represent the largest immunological organ of the body.  In particular, the 

intestinal lamina propria contains a complex mixture of immune cells that maintain immune 

tolerance and pathogen defense in a tightly controlled balance (reviewed in [1]).  Active IBD is 

characterized by a massive infiltration of innate immune cells, including neutrophils, 

macrophages, dendritic cells, and natural killer cells, which fulfill complex roles under 

physiological as well as pathophysiological conditions.  Importantly in the context of this review,  

activated neutrophils and macrophages are major sources of ROS and RNS that are among the 

main factors against invading pathogens, but can also cause collateral damage to the host tissue, 

thereby potentially initiating and promoting carcinogenesis (see below).  Apart from innate 

immune cells, those of the adaptive immune system (e.g., B and T cells), also control intestinal 

homeostasis.  Perturbation of the balance of Th17 cells, which produce the pro-inflammatory 

signature cytokines IL-17, IL-21, and IL-23, and regulatory T-cells, which produce the anti-

inflammatory cytokines IL-10 and TGF-β appear to be of particular importance.  An imbalance in 
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these systems seems to play a crucial role in the etiology of IBD (reviewed in [2]).  For an in-

depth discussion on the intestinal immunology in the pathology of IBD, the reader is referred to 

several recent reviews [2,4,6,11-17].  In summary, IBD is a multifactorial disease that is thought 

to result from a perturbation in host-microbe interactions leading to an immunological imbalance 

and chronic inflammation in genetically susceptible individuals [3]. 

Strong epidemiological evidence indicates that inflammation existing in Crohn’s disease and 

ulcerative colitis is associated with increased risk of colon cancer, but the responsible molecular 

mechanisms remain largely undefined.  More than 20% of patients with IBD develop colitis-

associated cancers within 30 years of disease onset, and >50% of these patients die from them 

[7].  Notably,  patients who develop IBD at a young age (< 30 yrs) have a much greater risk of  

cancer development [18].  In general, the risk for colon cancer increases with duration and 

severity of disease, whereas it decreases when patients are treated with anti-inflammatory drugs 

such as mesalamine and corticosteroids, consistent with a causative role for inflammation in 

colon carcinogenesis (reviewed in [19]). 

Spontaneous colorectal cancer shares many common pathophysiological mechanisms with 

colitis-associated cancer, but differs in some distinct ways (reviewed in [7]).  For example, as 

with spontaneous colorectal cancer, colitis-associated cancers may progress through a sequence 

of aberrant crypt foci, polyps, adenomas, and carcinomas.  However, dysplasia in spontaneous 

colorectal cancer is often focal, whereas colitis-associated cancers often develop through a 

sequence of chronic inflammation, tissue injury, and multifocal dysplasia leading to the 

formation of poorly-defined carcinomas.  The genetic alterations such as chromosomal 

instability, microsatellite instability, and DNA hypermethylation found in spontaneous colon 

cancers also occur in colitis-associated cancers; these characteristics arise in inflamed tissue 

before the appearance of histological evidence of dysplasia or cancer [19].  Common tumor-

related signaling pathways, including factors such as Wnt, β-catenin, K-ras, p53, TGF-β, and 

DNA repair, are affected in development of spontaneous as well as colitis-associated cancers, but 

at different stages of tumor formation [7].  It is very likely that crypt stem cells represent the 

cells-of-origin for cancer development, in both spontaneous colorectal and colitis-associated 

cancers [20].  However, recent studies demonstrate that NF-κB signaling can lead to 

dedifferentiation of intestinal epithelial cells into tumor-initiating cells with stem cell-like 

properties [21].  This is consistent with the fact that colitis-associated carcinogenesis (CAC) is 
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characterized by production of NF-κB and Stat3-dependent pro-inflammatory cytokines, and 

activation or inactivation of oncogenes and tumor suppressors, respectively.  Reactive chemical 

species are likely to play an important role in these processes and there is increasing experimental 

evidence supporting the hypothesis that during inflammation, cells of the innate immune system 

generate large amounts of ROS and RNS inducing genetic and epigenetic changes, which may 

lead to mutations and tumor initiation and promotion [22]. 

1.2 Mouse models of colitis-associated carcinogenesis 

Several mouse models of colitis have been developed to study molecular disease 

mechanisms and to define targets for translational approaches.  Colitis is induced by chemical 

agents, by genetic intervention, by infection or by combinations of these factors (Table 1).  In 

light of the recent criticism of mouse models of human disease [23,24], which in our opinion has 

been overstated and inaccurate, we demonstrate that many compelling pathological and 

mechanistic correlates exist between mouse models of colitis-associated cancer and the clinically 

relevant disease in humans.  Indeed, as we review here, a plethora of studies in mouse models of 

colitis have revealed that many chemical and biological mechanisms of pathology share strong 

similarities across species boundaries (Table 2), which is most evident by the fact that human 

IBD and various forms of colitis in mice lead to an increased risk of colon carcinogenesis.  Only 

through the combination of animal models and studies utilizing human IBD patients can a deeper 

understanding be obtained of the chemistry and biology in CAC, through the use of 

multidisciplinary approaches from genetics to microbiology, chemistry, systems biology and 

mathematical modeling, combined with thoughtful data interpretation. 

We recently conducted a systematic analysis of mechanisms and biomarkers of Helicobacter 

hepaticus (H. hepaticus)-induced colitis in immunodeficient 129 Rag2-/- mice with respect to 

various aspects of disease development [25-29].  The gram-negative spiral bacterium H. 

hepaticus colonizes the liver and intestinal crypts of the cecum and the colon, establishing a life-

long infection [25,26,30,31].  H. hepaticus does not typically cause disease in immunocompetent 

mice, but infection in susceptible mouse strains or in immunodeficient mice, such as those 

lacking the recombinase-activating gene-2 (Rag2), results in chronic colitis and colon cancer [25] 

(Figure 1).  H. hepaticus infection in Rag2-/- mice emulates many aspects of human IBD and as 

discussed here, this mouse model has proved to be a valuable tool specifically to study features of 

innate immunity during CAC. 
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2 Immunological chemistry of inflammatory bowel disease 

Colonic inflammation results in a local release of cytokines and other chemotactic factors 

that cause infiltration and activation of innate immune cells to produce large quantities of other 

cytokines and chemokines resulting in the activation of various enzymes that generate a wide 

spectrum of reactive chemical species as summarized in Figure 2 and discussed in the following 

sections in detail.  In particular, we summarize evidence that these chemical mediators of 

inflammation can react with all types of macromolecules, including proteins, RNA, and DNA, to 

cause mutagenic and cytotoxic damage, thereby contributing to colon carcinogenesis. 

2.1 Cell types involved in the generation of reactive chemical species during IBD 

In addition to the endogenous production of NO by colonic epithelial cells [32-35], 

macrophages and neutrophils are thought to be responsible for the bulk of ROS and RNS 

generation during acute and chronic inflammation (Figure 2).  Both cell types are closely related 

and cooperate during the onset, progression and resolution of inflammation.  Usually, tissue-

resident macrophages and dendritic cells sense inflammatory stimuli, which causes chemokine-

dependent recruitment of neutrophils followed by infiltration of blood monocytes, both of which 

then differentiate and become activated (reviewed in [14]). 

Initial support of the hypothesis that innate immune cells can act as carcinogens was 

obtained by Weitzman and colleagues, who exposed mouse fibroblasts to activated human 

neutrophils or a cell-free ROS-producing system.  Following injection of the fibroblasts into nude 

mice, tumors developed, but only in mice injected with exposed cells.  Mice injected with control 

cells remained tumor-free, which indicated that activated neutrophils and ROS are able to 

mediate malignant cell transformation [36].  It is well established that neutrophils and 

macrophages play a pivotal role in the induction and maintenance of inflammation during colitis 

in mice and humans [26,37-39].  In addition, several studies support the functional relevance of 

these cell types during colon carcinogenesis.  For example, in a rat model of dextran sodium 

sulfate (DSS)-induced acute colitis, selective depletion of neutrophils by intraperitoneal injection 

of a neutrophil-specific monoclonal antibody significantly reduced pathology [40].  A similar 

antibody-based approach was used to selectively deplete mature neutrophils in H. hepaticus-

infected Rag2-/- mice, a model in which there is massive infiltration of macrophages and 

neutrophils during disease development [26,27,29].  Interestingly, depletion of neutrophils in 
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these mice significantly decreased the severity of colon pathology, including cancer rates, and led 

to lower expression of pro-inflammatory cytokines and ROS/RNS-generating enzymes (see 

below) [26].  Macrophages can also contribute to disease progression and severity, as shown in a 

mouse model of H. bilis-induced typhlocolitis, in which macrophages were selectively depleted 

by treatment with clodronate-containing liposomes.  Clodronate-treated mice exhibited 

significantly lower histopathology scores and suppressed expression of macrophage-related 

factors, such as TNF-α, Il-1β, and iNOS, suggesting that macrophages are important mediators of 

H. bilis-induced colitis.  However, the finding that clodronate treatment concomitantly reduced 

the number of MPO-positive neutrophils suggests that both macrophages and neutrophils closely 

interact in disease development on a functional level [41].  This view is supported by the H. 

hepaticus Rag2-/- mouse model that revealed cytokine signatures suggestive of both neutrophil 

and macrophage activity [29].  Interestingly, this finding correlated well with results from 

patients with Crohn’s disease.  In contrast, cytokine signatures of patients with ulcerative colitis 

were more suggestive of neutrophil activity only, indicating specific differences between the two 

types of IBD on a molecular level [29]. 

2.2 NADPH oxidases, xanthine oxidoreductase, and the generation of ROS 

Superoxide (O2
•-), is the primary source of ROS in humans.  Under physiological conditions, 

mitochondrial respiration is the major source, whereas NADPH oxidase (official gene symbol: 

Nox, not to be confused with NOx which refers to NO oxidation products) and xanthine 

oxidoreductase (XOR) significantly contribute to the generation of O2
•- under pathophysiological 

conditions (reviewed in [42-44]) (Figure 2). 

NADPH oxidases represent a widely distributed family of enzymes, with each species 

consisting of a flavoprotein, cytochrome b and several regulatory subunits.  When activated, the 

enzymes assemble in the cell membrane and reduce oxygen to O2
•-.  Phagocytic cells express 

NADPH oxidase 2 in the phagosomal membrane, where it generates high fluxes of O2
•- (reviewed 

in [42,43,45]).  In addition to ‘phagocyte NADPH oxidases 2’, NADPH oxidases 1 is highly 

expressed in the gastrointestinal tract.  Levels of the mRNA of NADPH oxidase 1, also known as 

the ‘colon NADPH oxidase’, increase from proximal to distal colon [45].  Even under 

physiological conditions, NADPH oxidase 1 is highly expressed in colon epithelial cells, both 

within the crypts and on the luminal surface [46,47].  Maturation-dependent factors seem to 

regulate the expression of NADPH oxidase 1 in colonic epithelial cells, which leads to the 
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highest expression levels in surface mucous cells where NADPH oxidases are thought to 

contribute to host defense.  However, under pathophysiological conditions, they may mediate 

tissue damage by generating ROS.  This view is consistent with results from H. hepaticus-

induced colitis in Rag2-/- mice, in which gene expression of NADPH oxidases 1 and 2 (Nox 1, 

Nox2) was significantly up-regulated in inflamed tissue.  This was accompanied by higher 

expression levels of several regulatory subunits of the NADPH oxidase system, such as Ncf1 

(p47phox) and Ncf2 (p67phox) [27], presumably a result of tissue infiltration of innate immune 

cells.  In addition, studies in mice and human cells have shown that pro-inflammatory cytokines 

induced during colitis activate expression of NADPH oxidases [48,49].  The role of NADPH 

oxidase in human IBD and colon carcinogenesis is not well characterized.  Some evidence comes 

from patients with chronic granulomatous disease, many of whom have genetic defects in the 

NADPH oxidase system that results in an immunodeficiency phenotype characterized by an 

inability of phagocytes to kill invading pathogens.  These patients exhibit an increased risk for 

IBD, suggesting that NADPH oxidases have a direct role in controlling intestinal homeostasis 

[45,50,51].  Szanto et al. reported strong expression of NADPH oxidase 1 in active lesions from 

patients with Crohn’s disease and ulcerative colitis [46] and Fukuyama et al. reported  significant 

up-regulation of NADPH oxidase 1 in colonic tumor tissue [47], suggesting a functional role of 

NADPH oxidases in disease progression.  Despite these findings, comprehensive understanding 

of the functional role of NADPH oxidases in CAC is incomplete, and conclusions rely mainly on 

correlative studies, while mechanistic studies in mice and humans are limited.  Genetic studies 

analyzing mechanisms of CAC in mice carrying mutations or deletions in the NADPH oxidase 

system would be of interest with respect to pharmacological interventions, since NADPH 

oxidases are already being considered as potential drug targets for treatment of other 

inflammatory disorders, such as vascular disease [43]. 

Xanthine oxidoreductase (XOR) is a multifunctional enzyme that is expressed and secreted 

by many epithelial cells including those in the colonic mucosa (reviewed in [44]) (Figure 2).  

The enzyme possesses two activities, as both a reductase and an oxidase.  The reductase catalyzes 

the oxidative hydroxylation of hypoxanthine to xanthine and subsequently of xanthine to uric 

acid.  In this functional state, xanthine reductase acts as a housekeeping enzyme with a role in 

purine catabolism, detoxification and the regulation of the cellular redox potential.  Various 

stimuli induce the conversion into an oxidase, either reversibly by thiol oxidation or irreversibly 



10 
 

by limited proteolysis.  In contrast to the reductase, xanthine oxidase is associated with 

production of large amounts of ROS including O2
•- [44].  The enzyme has also been directly 

implicated in the activation of macrophages through effects on chemokine expression and other 

factors, thereby participating in macrophage-mediated neutrophil recruitment [52]. 

In the human colon, XOR immunostaining follows a gradient along the villus-crypt axis in a 

pattern similar to that observed for NOX1, with luminal epithelial cells showing the strongest 

staining.  XOR staining was also observed in cells at the base of the crypt, as well as in 

neutrophils and endothelial cells in the lamina propria [53].  Data on the role of XOR in colitis 

and associated cancer development is limited and controversial.  H. hepaticus-infected Rag2-/- 

mice showed higher expression levels of XOR mRNA in inflamed tissue, but the origin of this 

increase is currently unknown [27].  Up-regulation of XOR is consistent with the finding that 

XOR is stimulated by IFN-γ, TNF-α, and IL-1, and some of these factors also trigger the 

reductase-oxidase conversion [44].  Furthermore, Siems et al. reported that the XOR inhibitor 

oxypurinol protects mice from morphological and molecular changes occurring in TNBS-induced 

colitis.  However, as is it the case with every pharmacological inhibitor, specificity of the 

compound is an issue.  Although these results indicate a role of XOR in murine colitis and XOR 

has been associated with other inflammatory diseases [44], its role in human IBD awaits further 

clarification.  Kruidenier et al. reported that epithelial apoptosis in patients with Crohn’s disease 

was strongly associated with XOR expression, suggesting a role for XOR in the regulation of 

epithelial homeostasis.  However, in this study, overall levels of XOR were unaffected during 

intestinal inflammation, indicating that XOR contributes to disease development more through 

local and functional changes in its activity [53]. Mouse genetics could shed some light on the role 

of XOR in colitis, which could be instrumental to test potential treatment options by targeting this 

enzyme, In this respect, generation of colon-specific knock-out mice or genetically engineered 

mice that specifically lack the enzymes’s oxidase function may represent one possible line of 

investigation, since Xor-/- mice die within the first six weeks after birth due to renal failure 

[54,55]. 

Superoxide can be transformed by superoxide dismutases (SOD) into hydrogen peroxide 

(H2O2), which can be either detoxified by catalases and peroxidases into H2O and O2, or it can be 

reduced by divalent metal ions in Fenton chemistry that gives rise to highly reactive hydroxyl 

radicals (•OH) [42] (Figure 2).  Since H2O2 reacts poorly with most biological molecules and is 
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highly diffusible, it acts as an important signal transducer (reviewed in [42,56]).  For example,  

H2O2 activates phosphorylation cascades resulting in downstream effects such as enhanced stress 

resistance, cell proliferation, cytokine release, cell adhesion, growth arrest and apoptosis.  Its 

damaging effects are mainly caused by its reaction with seleno-, thiol or heme peroxidases to 

produce radical and non-radical species as well as through •OH formed by Fenton chemistry [42].  

In mice with TNBS-induced colitis, H2O2 levels immediately increased in the muscularis externa 

within the first week after treatment, with peak levels achieved after the first day [57].  That the 

generation of H2O2 acts as a detoxifying pathway is suggested by studies of SOD, the major 

source of H2O2.  For example, in DSS-induced colitis, Cu/Zn-SOD-overexpressing transgenic 

mice showed a survival benefit that was accompanied by an enhanced clearance of neutrophils 

[58].  Moreover, studies in which SOD and SOD mimetics were administered during TNBS and 

DSS-induced colitis revealed beneficial effects of SOD with regards to disease severity and 

molecular damage [59-62].  In studies of human colitis, MnSOD was strongly up-regulated in 

inflamed epithelium, whereas the Cu/ZnSOD content decreased with inflammation.  On a cellular 

level, Cu/Zn and MnSOD were prominently present in neutrophils and macrophages, while 

extracellular (EC)-SOD was mainly localized in small vessels, stromal cells, and neutrophils.  

This differential regulation of the SOD isoforms indicates that ROS generation and its 

detoxification are important factors in the etiology of IBD, whose specific role needs to be 

clarified in future studies [63]. 

2.3 Nitric oxide synthases and the generation of reactive nitrogen species (RNS) 

Nitric oxide (NO) is the key molecule during the generation of RNS (Figure 2).  Since NO 

has a low molecular weight, is uncharged, and is soluble in both aqueous and hydrophobic 

environments, it is highly diffusible across cell membranes and through tissues.  The diffusion 

coefficient for NO is 3300 µm2s-1, which is comparable to that for O2 (2800 µm2s-1) and implies 

that NO is able to diffuse as far as 5-10 cell diameters in 1 sec [56].  NO production in cell 

culture studies coincides with the appearance of NO2
- and NO3

-, which are formed at 

approximately equal and constant rates [64].  These metabolites arise from NO auto-oxidation by 

reacting with O2 to form nitrogen dioxide radical (NO2
•) that can react further with NO2

• or NO to 

form N2O4 or N2O3, respectively.  These higher N-oxides can subsequently form NO2
-, NO3

- and 

nitroso products, which are closely related with enzymatic as well as non-enzymatic conversions 

with complex (patho-)physiological consequences [65-67].  Furthermore, NO reacts with O2
•- at 
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diffusion controlled rates to form peroxynitrite (ONOO-) [68] (Figure 2).  ONOO- represents an 

important source of a complex spectrum of highly reactive secondary radicals [42].  Its 

protonated form, ONOOH, undergoes rapid (t1/2 ~ 1 sec) homolysis to form the strongly 

oxidizing •OH and the weaker oxidant NO2
•.  In addition, ONOO- reacts with CO2, which is 

present in millimolar concentrations in tissues, to form nitrosoperoxycarbonate (ONOOCO2
-), 

which decomposes with a half life of ~50 msec into NO2
• and highly reactive carbonate radical 

anions (CO3
•-) [69].  When the concentration of NO• exceeds that of O2

•-, which predominantly 

occurs within cellular membranes, autoxidation leads to the formation of NO2
• and N2O3.  N2O3 

itself is an S- and N-nitrosating species, but readily decomposes with a half-life of 0.2 msec 

[56,69]. 

Three isoforms of NO synthases exist that can generate NO over a wide range of 

concentrations in an NADPH and O2-dependent process by converting L-arginine to citrulline 

and NO [70].  Neuronal and endothelial NOS produce NO at low levels in nerve and endothelial 

cells, respectively, while activation of inducible NOS (iNOS) leads to high NO concentrations in 

macrophages during inflamation (reviewed in [71]).  In general, the chemical biology of NO can 

be divided into two categories: (i) direct effects of NO mediated by chemical reactions that occur 

fast enough to allow NO to react directly with biological target molecules, and (ii) indirect effects 

that require that NO reacts with other ROS to generate RNS, which then react with biological 

targets [56].  Biological functions of NO are highly concentration dependent, with relevant 

concentrations varying over three orders-of-magnitude.  One of the major challenges in the study 

of colitis has been to define the concentrations of NO arising in the inflamed colon and the 

biological consequences of the different concentrations of NO and its derivatives in the inflamed 

tissue.  In this regard, significant insights have been obtained from computational modeling.  By 

describing rates of reaction and diffusion in realistic geometries, mathematical modeling has 

estimated that maximal NO concentrations reached at the base of a crypt are in the sub-

micromolar range (~0.3 µM) and the cumulative NO dose an epithelial cell is experiencing 

during migration from the base to the top of the crypt is ~560 µM min [72] (Figure 3).  Taking 

into account findings that epithelial cells contribute to the NO production in the colon [32,73,74] 

and that macrophages are able to infiltrate into the lamina propria, these models predict maximal 

NO concentrations of ~ 0.4 µM and maximal cumulative doses of ~1 µM min [72] (Figure 3).  

These calculations are in accordance with cell culture studies demonstrating that upon stimulation 
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macrophages produce levels of NO up to 1 µM [64].  As a rule of thumb, at low (nM) 

concentrations NO promotes cell survival and proliferation and acts as an important signaling 

molecule in the cardiovascular, nervous and immune systems, while, at higher concentrations (≤ 

1 µM), such as may occur at sites of inflammation, it can be cytotoxic and cytostatic, inducing 

cell cycle arrest, apoptosis and senescence [56,69,75,76]. 

During colitis, iNOS is considered the main source of NO.  In healthy mice, iNOS mRNA is 

expressed in the ileum, but not in the jejunum or colon.  iNOS protein is also detected in normal 

ileal epithelial cells, suggesting that it may also fulfill a role in maintaining intestinal homeostasis 

[33].  In the inflamed gut, iNOS is present throughout the intestinal tract, including the jejunum 

and colon [26,27,33,37,77,78].  Induction of iNOS is regulated by neutrophils and macrophages 

in combination with cytokine stimuli, as suggested by the fact that depletion of Gr-1+ neutrophils, 

clodronate-induced depletion of macrophages, and blocking of TNF-α in the colon, respectively, 

prevented iNOS induction [26,41]. Various mouse studies demonstrated that colitis-induced 

activation of iNOS is accompanied by increased levels of NO-derived species in plasma and 

urine [26,38,39,79].  Saijo et al. studied the dynamics of biomarkers of NO production, such as 

NO2
-, NO3

-, and nitroso and nitrosyl species during DSS-induced chronic and acute colitis [80], 

and showed that blood levels of nitroso products correlated well with disease development.  This 

correlation was also true for plasma levels of NO2
- and NO3

-, but only in acute colitis during the 

onset of the inflammatory response.  A more complex response of these ions was observed in 

tissues as well as in the chronic colitis model.  Interestingly, for all markers analyzed, similar 

changes were observed in organs other than colon, such as liver, brain, aorta, and heart, 

highlighting the systemic effects of this disease.  In general, the study by Saijo et al. suggests that 

NO2
- serves as a suitable indicator of colitis per se, although the rise of plasma NO2

-may not 

correlate well with the progression and resolution of inflammation [80]. 

Supporting the notion that NO generation during colitis can be attributed to the activation of 

iNOS, no increase in NO-derived species was observed during colitis in Il-10-/- mice in an iNos-/- 

background [38].  Similarly, in H. hepaticus-infected Rag2-/- mice concurrent administration of 

an iNOS inhibitor prevented NO3
- production and reduced epithelial pathology and cancer 

incidence [26].  Similarly, an iNOS inhibitor significantly reduced colonic adenocarcinoma 

formation in a dose-dependent manner in a CAC model using DSS-treated ApcMin/+ mice [81].  

These effects can be directly attributed to iNOS inhibition, since during H. hepaticus-induced 
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colitis, iNOS inhibitor treatment had no influence on the numbers of neutrophils and 

macrophages [26].  Interestingly, administration of iNOS inhibitors also decreased the levels of 

pro-inflammatory cytokines such as TNF-α and IL-1β in DSS-induced colitis, indicating a 

positive-feedback regulation of these components under inflammatory conditions [79,81].  The 

notion that ONOO- can not only act as a downstream effector molecule, but also as an active 

driving force of disease development is supported by the finding that intrarectal administration of 

ONOO- itself was sufficient to induce the generation of NO-derived species, iNOS expression, 

and colitis in rats [82]. 

Ambiguous results were obtained from genetic studies of colitis in iNos-/- mice.  Several 

groups reported a protective effect of iNOS depletion on tissue inflammation, damage, and cancer 

rates [39,78,83-85], whereas others found no effect [38,86] or even more severe tissue damage 

and pathology in iNos-/- mice [37,87].  Krieglstein et al. performed bone marrow transplantation 

experiments using iNOS-proficient or -deficient cells transplanted into wild-type or iNos-/- mice.  

In mice deficient in either tissue or blood cell iNOS, or both, DSS-induced colitis was attenuated.  

Interestingly, MPO activity was also lower in iNos-/- mice and occurred at the lowest levels in 

iNos-/- mice transplanted with blood cells carrying functional iNOS.  These results suggest that 

both blood-cell and tissue-derived iNOS plays a role in DSS-induced colitis, with tissue-

associated iNOS making a larger contribution to the recruitment of MPO-positive inflammatory 

cells [84].  Similarly, Beck et al. showed that chimeric mouse lines with iNOS-deficient blood 

cells were more resistant to DSS and TNBS-induced colitis;  in the DSS model neutrophils were 

the main source of iNOS [88].  This is in agreement with our finding that depletion of Gr-1+ 

neutrophils of H. hepaticus-infected mice prevented iNOS induction in the colon [26].  Another 

study analyzed mouse lines deficient in iNOS, nNOS, eNOS or e/nNOS and revealed that loss of 

iNOS or eNOS was protective on DSS-induced colitis, whereas loss of nNOS resulted in more 

severe disease and higher mortality rates.  These results indicate that NO produced by individual 

isoforms plays different roles in the modulation of intestinal inflammation [85].  In terms of 

signature biomarkers of iNOS activity, H. hepaticus-induced colitis in Rag2-/- mice led to 

significantly higher levels of nitrotyrosine in colon tissue as well as in serum [29].  Similarly, 

TNBS-induced colitis led to increased levels of nitrotyrosine [39].  In this model, ablation of 

iNOS resulted in reduced levels of nitrotyrosine indicating that iNOS is required for the 

generation of nitrosative damage [39].  On the other hand, in iNos+/+ and iNos-/- mice with 
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chronic DSS-induced colitis showed no differences in nitrotyrosine levels, pointing to a role of 

MPO activity (see below) [86].  These apparently contradictory results may be reconciled by a 

mechanism in which depletion of iNOS has a protective effect mostly in models of acute, severe 

colitis, whereas, in models of chronic colitis, depletion of iNOS has either no effect or results in 

more severe pathology [37,38,86,87].  The different effects of iNOS depletion in different colitis 

models may therefore be dependent upon the severity of disease at the time point analyzed and 

may represent the double-edged role of NO as a signaling molecule on the one hand and a tissue-

damaging factor on the other.  Moreover, there is evidence for endogenous production of NO by 

iNOS in epithelial cells [87,88[73,74].  Recently, Shaked et al. demonstrated that mice with a 

deletion in one allele of the Apc gene specifically in intestinal epithelial cells (IEC) in 

combination with constitutively active NF-κB signaling in these cells (Ikkβ(EE)IEC/Apc+/ΔIEC 

mice) show increased levels of iNOS expression, DNA damage induction and elevated colon 

carcinogenesis [32].  Interestingly, these mice developed intestinal tumors despite the absence of 

signs of pathology and hyperplasia typical of colonic inflammation.  Treatment of these mice 

with an iNOS inhibitor reduced cancer rates and molecular damage markers highlighting the 

iNOS-dependency of the observed effects (see below for further discussion of this mouse model) 

[32]. 

Although there is a controversy about the factors that trigger human macrophages to produce 

NO and the quantity of NO generated [89-92], the results obtained with rodent models of IBD 

have largely been confirmed in humans.  Thus, increased iNOS expression and activity were also 

identified in patients with Crohn’s disease and ulcerative colitis [73,74,93,94].  Interestingly, as 

observed in mouse models, iNOS and nitrotyrosine were not only detected in mononuclear cells, 

but also in neutrophils, which suggests a significant role for this cell type in NO production 

during human disease [74].  Several studies have found a correlation between increased iNOS 

expression during IBD and nitrotyrosine levels and NO production itself [73,74,94-97], but 

correlation of NOS activity with severity of disease was not always evident, and profound 

differences in molecular fingerprints existing between Crohn’s disease and ulcerative colitis 

[93,98,99].  In terms of biomarker development, a recent study of 38 patients with ulcerative 

colitis and 42 patients with Crohn’s disease revealed only slightly elevated plasma levels of 

nitrotyrosine in active compared to inactive IBD, and no significant differences were found 

compared to non-IBD control subjects.  These results suggest that NO-derived damage is less 
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pronounced in humans compared to rodent colitis models and that nitrotyrosine may not be the 

most suitable biomarker of human disease [29]. 

2.4 MPO and the generation of HOCl 

Hypochlorous acid (HOCl,) is one of the most potent antimicrobial compounds released by 

activated immune cells as a first-line defense mechanism against invading pathogens.  During 

inflammation, HOCl could lead to injurious reactions in surrounding host tissue.  HOCl is 

generated from Cl- and H2O2 by heme peroxidases, such as neutrophil MPO or eosinophil 

peroxidase (EPO) (Figure 2).  Analogous reactions generate hypobromous acid (HOBr) and 

hypothiocyanous acids (HOSCN).  All of these molecules are particularly reactive with thiols, 

methionine, and tyrosine, and are also capable of damaging nucleobases (see below, reviewed in 

[42,100,101]).  For a more in-depth discussion of the various and complex reactions mediated by 

MPO, the reader is referred to recent reviews [102,103]. 

Although there are reports that MPO is expressed in specific monocytes and macrophages, 

its major site of expression is the neutrophil, and MPO immunostaining is often used as a marker 

for the in situ detection of neutrophils.  Within neutrophils, MPO is stored mainly in azurophilic 

granules, which are released into the extracellular space during neutrophil activation [103].  It is 

therefore not surprising that MPO protein levels and activity are elevated during colitis, since 

neutrophils are recruited to sites of inflammation [27,79,104].  In mouse models of C. rodentium-

induced acute colitis and H. hepaticus-induced chronic colitis, infiltration of MPO-positive cells 

was associated with increased tissue and serum levels of protein damage markers of HOCl (e.g., 

chlorotyrosine) [27,29,104].  Interestingly, in both mouse models, increases in chlorotyrosine 

were much more pronounced than increases in nitrotyrosine, indicating that MPO-mediated 

halogenation chemistry is of central importance during infection-induced colitis in mice.  

Increases in nitrotyrosine in these mouse models may be also attributable to MPO activity, since 

it was shown that MPO (and EPO) can use H2O2 to convert NO2
- to NO2

• via a nitryl chloride 

(NO2Cl) intermediate [105].  During inflammation this process may also contribute to 

cytotoxicity mediated by tyrosine nitration and chlorination, and other macromolecular damage.  

Using MPO- and EPO-deficient mice, Brennan et al. demonstrated that MPO and EPO 

participate in nitrotyrosine formation in vivo, possibly by generation of NO2
• and, to a lesser 

extent, ONOO-; in some instances, MPO and EPO accounted for the majority of the nitrotyrosine 

formed [106].  Similar results were obtained in a model in which peritonitis was induced either 
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by cecal ligation and puncture or by infection with K. pneumoniae; only the latter led to an 

increase of total NO2
- and NO3

- levels of about 20-fold and to increased levels of nitrotyrosine 

[107].  In contrast, nitrotyrosine levels remained unchanged in K. pneumoniae-infected mice 

deficient in MPO, supporting the view that MPO is capable of generating RNS in vivo [107].  

Also noteworthy was the finding in a human study that increases in nitrotyrosine in ulcerative 

colitis correlated only with MPO expression and not with that of iNOS [53]. 

In contrast to reports of studies in iNos-/- mice, none have been reported in Mpo-/- -deficient 

mice to assess the role of MPO during colitis and CAC.  However, some information is available 

from other pathological states.  While Mpo-/- mice were more susceptible to several types of 

infections, such as infections with Candida albicans and Klebsiella pneumoniae, they 

paradoxically showed more severe atherosclerosis [108].  Additionally, deficiency in MPO was 

associated with increased infarct volumes and nitrotyrosine formation in a mouse model of 

ischemic brain injury [109].  These studies thus suggest a protective, anti-inflammatory role of 

MPO, in at least select inflammation-related pathologies [103,108,109].  Thus, the possibility 

cannot be excluded that MPO expression and activity during colitis might serve as in part a 

mechanism of tissue protection rather than tissue destruction.  Studies in Mpo-/- mice with respect 

to colitis and colon cancer development would help to clarify this interesting question. 

In the context of the fact that MPO expression is well correlated with human IBD, a recent 

study revealed that MPO immunostaining may serve as marker to assess disease activity in 

patients with ulcerative colitis [110].  This is consistent with our own study in patients with 

ulcerative colitis and Crohn’s disease where MPO-derived chlorotyrosine was significantly 

elevated in serum from patients with ulcerative colitis and Crohn’s disease, potentially 

contributing to a set of biomarkers for IBD activity in human serum [29]. 

2.5 Antioxidant defense 

Efficient antioxidant defense systems exist to keep the cellular redox state in balance. The 

most prominent ones include the glutathione/glutathione disulfide (GSH/GSSG), cysteine/cystine 

(Cys/CySS), and thioredoxin/thioredoxin disulfide (TRx/TRxSS) redox couples.  These systems 

maintain mucosal integrity and intestinal homeostasis, which is evident by the fact that, for 

example, GSH is present in millimolar concentrations in the intestinal epithelium and its de novo 

synthesis can be efficiently induced upon pathological stimuli.  Nevertheless, conditions of 
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oxidative and nitrosatative stress can occur if ROS and RNS levels exceed the cellular 

antioxidative capacity. 

Evidence supporting an active role of antioxidant defense mechanisms in the control of 

intestinal homeostasis comes from both mouse and human studies.  Ardite et al. suggested that 

TNBS-induced colitis is triggered by ROS generation followed by GSH depletion.  Following 

treatment with TNBS, GSH pools in colon mucosa were found to be depleted, an effect that was 

inhibited by administration of the GSH precursor and antioxidant N-acetylcysteine (NAC), which 

resulted in significantly less histological injury.  Underpining the dynamic and tightly regulated 

control of antioxidant systems, GSH levels recovered after ~1 week of TNBS treatment due to 

induction of γ-glutamylcysteine synthase gene expression [111].  NAC-protective effects were 

also observed in a long-term DSS-induced colitis model, in which NAC treatment reduced 

histopathology accompanied by reduced numbers of nitrotyrosine and iNOS-containing cells in 

the mucosa.  Mechanistically, the finding that NAC administration reduced tumor incidence may 

be attributed to sensitization of epithelial cells to apoptosis [112].  Redox regulation also plays an 

important role in human IBD, which is evident by findings that intestinal subepithelial 

myofibroblasts in patients with Crohn’s disease exhibited an increased oxidative state due to a 

decrease in the GSH/GSSG ratio [113] and GSH content in tissue from colorectal tumors was 

much lower than in non-malignant tissue [114]. 

Several enzymes are involved in the intra-intestinal antioxidant defense.  For example, 

glutaredoxins (GRx) and glutathione reductase (GSR) catalyze the reduction of GSSG through 

thiol-disulfide exchanges.  Similarly, thioredoxin reductases (TxnRD) are involved in the 

regeneration of thioredoxin.  Gluthathione peroxidases (GPx) are the major H2O2-reducing 

intestinal selenoproteins and GSH S-transferases catalyze GSH-detoxification reactions of 

luminal electrophiles and carcinogens (reviewed in [115]).  These antioxidant defense systems 

are dynamically regulated in the course of colitis development as recently revealed by sensitive 

qPCR-array-based gene expression profiling in H. hepaticus-infected Rag2-/- mice [27].  

Unexpectedly, several antioxidant enzymes, such as MnSOD and catalase, showed modestly 

decreased levels in inflamed tissue, whereas others, including glutathione and thioredoxin 

reductases (Gsr and Txnrd1) as well as Gpx2, displayed higher expression levels, which points to 

complex regulatory networks that counteract oxidative stress during colitis. 
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In particular, GPx2 is an interesting factor in the etiology of colitis.  GPx2 is a 

gastrointestinal-specific form of GPx that is highly expressed at crypt bases.  Similar to other 

glutathione peroxidases, GPx2 reduces hydroperoxides using GSH.  However, GPx2 seems to 

play a double-edged role during the etiology of IBD [116].  GPx2 is up regulated during colitis, 

and possibly could protect colon tissue by reducing concentrations of inflammation-derived 

hydroperoxides, which may otherwise give rise to highly reactive •OH [117].  In accordance with 

this view, Gpx2-/- mice were susceptible to DSS-induced colitis and Gpx2-/- mice treated with a 

combination of DSS and azoxymethane (AOM) tended to develop higher incidence of tumors 

than wild-type animals [118].  Of note, tumor incidence in this model showed a strong positive 

correlation with inflammation scores [116].  Some defects caused by GPx2 deficiency are 

thought to be compensated by up-regulation of GPx1 [119].  This becomes more evident by the 

finding that in GPx1/2 double deficiency spontaneous development of colitis was accompanied 

by elevated levels of MPO activity, increased mutation frequencies, and spontaneous cancer 

development [120]. In spite of the evidence for a protective role, tumor sizes were smaller in 

Gpx2-/- mice.  This has been associated with anti-apoptotic and pro-proliferative properties of 

GPx2 and highlights the double-edged role of this enzyme in CAC [116,118,119].  This view is 

consistent with human data showing that expression levels of GPx1 and GPx3 were significantly 

decreased in colorectal tumor samples, whereas those of GPx2 were increased [114]. 

Gpx2 expression is regulated by the transcription factor NRF2, which acts as a cellular 

master switch in controlling expression of a plethora of oxidative stress response genes.  Its 

activity is controlled by KEAP1, which binds to NRF2 and retains it in the cytosol, inducing its 

degradation via ubiquitylation.  Upon oxidation or nitrosylation of specific thiol residues, KEAP1 

releases NRF2 to the nucleus, where it induces expression of antioxidant and detoxifying genes, 

such as heme oxygenase, GSTs, and GPx2 [121].  It is important to note that in addition to their 

direct role in redox regulation, GSH and TRx serve as trans-nitrosylation agents with functional 

consequences on several important biochemical signaling pathways [122].  Because GSH is the 

predominant pool of thiol groups in cells, it can serve as the initial pool of nitrosothiols (RSNO), 

which are then available for transnitrosylation to many other proteins and peptides [123].  For 

example, it was shown that GSNO is able to site-specifically transnitrosate TRx in a redox-

controlled manner which is then able to catalyze caspase-3 nitrosation leading to inhibition of cell 

death [124-126].  With regard to NRF2 regulation, studies in the human colon cancer cell line 
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HCT116 revealed that S-nitrosylation can have direct functional consequences to cellular 

mechanisms in response to oxidative stress by regulating NRF2 activity [34].  Thus, direct S-

nitrosylation of KEAP1 may trigger nuclear translocation of NRF2, where it induces protective 

responses to counteract NO-induced damage to prevent CAC.  (N.B.: As discussed below, this 

may contribute to the relative resistance of HCT116 cells to NO-induced cytotoxicity [34]).  

Support for such a hypothesis comes from several animal studies demonstrating that Nrf2-/- mice 

have an increased susceptibility to DSS-induced colitis and associated colon cancer.  Specifically, 

increases in the severity of colitis and cancer incidence in Nrf2-/- mice were associated with 

repression of antioxidant/detoxifying genes and increased expression of mediators of 

inflammation such as iNOS, MPO, IL-1β, and TNFα as well as increased levels of nitrotyrosine 

staining [127-129].  Interestingly, Choi et al. showed that Nrf2 expression is modestly suppressed 

by oxidative stress during TNBS-induced colitis.  NRF2 stimulation by sulforaphane significantly 

reduced DNA instability during inflammation, indicating that suppression of NRF2 by unknown 

mechanisms has functional consequences in CAC [57].  The finding that Nrf2 is suppressed 

during colitis may also account for the down-regulation of some antioxidant and detoxifying 

genes in H. hepaticus-induced murine colitis [27].  Significantly, an epidemiological study 

suggested that a promoter polymorphism in the human Nrf2 gene is associated with ulcerative 

colitis in a Japanese population [130]. 

In summary, these results provide a potential foundation for development of pharmacological 

intervention to treat IBD.  Several mouse studies with antioxidant compounds have shown 

promising results, while clinical trials with these compounds largely proved to be negative 

because of adverse effects, non-specific drug distribution, and low retention in the colon [131-

133].  A recent report addressed the pharmacokinetic and pharmacodynamic problems 

encountered in previous studies by using NO-containing nanoparticles that exhibit antioxidant 

properties.  These particles showed improved accumulation and retention in the colonic mucosa 

and less up-take into the blood circulation compared to the low-molecular weight analogue 

TEMPOL.  Subsequently, therapeutic effects were significantly improved in a mouse model of 

DSS-induced colitis, suggesting that this type of treatment could offer a useful perspective for 

human therapy [134]. 
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3 Genotoxicology of ROS and RNS during inflammatory bowel disease 

Many of the chemical mediators of inflammation are thought to act as anti-microbial factors 

or signaling molecules, depending on their source, location and concentration.  In particular 

oxidative and nitrative modification of proteins and changes in the cellular oxidative state are 

thought to fulfill various signaling functions that lead to diverse biological outcomes, such as cell 

proliferation, cell cycle regulation, and induction of senescence and apoptosis.  On the other 

hand, these reactive chemical species can damage all classes of cellular biomolecules, including 

DNA, by both direct and indirect mechanisms, which elicit mutagenic and cytotoxic effects.  In 

the following section, we provide an overview of the genetic toxicology of inflammation-related 

chemical species during colitis. We begin with an overview on RNS-related cytotoxicity studies, 

and then examine more closely genotoxicological mechanisms involved in murine colitis and 

human IBD.  Finally, we discuss the regulation of DNA repair mechanisms during colitis and 

summarize work providing evidence that non-repaired, persistent damage products contribute to 

genomic mutations that initiate and promote CAC. 

CytotoxicityApplication of precise and biologically relevant concentrations of NO and its 

derivatives is essential to mimic the biological environment and to study the physiological and 

cytotoxic functions of these chemical species.  In general, NO can be delivered to cells via three 

approaches:  NO donor compounds, such as NONOates, NO gas, or NO produced by activated 

macrophages [135] (Figure 4 A-C).  The most rigorous conditions are achieved by using of NO 

and O2-permeable polydimethylsiloxande (Silastic) tubing to deliver gases at constant and 

predictable rates. These delivery systems are specifically designed and optimized to provide 

controlled, steady state concentrations of NO, O2, and NO2, thereby mimicking the chemical 

environment thought to exist in inflamed tissues [136-140].The range of estimated concentrations 

of NO in inflamed tissue, as obtained by mathematical modeling (Figure 3), are in reasonable 

agreement with those found to be cytotoxic in studies applying NO and O2 via Silastic tubing to 

cell culture media (Figure 4 D).  For example, the minimum NO dose that was associated with 

cytotoxicity in TK6 human lymphoblastoid cells was ~150 µM min [141].  Interestingly, TK6-

isogenic cells that lack p53 (NH32 cells) [141] and cells derived from colonic origin (HCT116 

cells) [34,139] were more resistant, displaying threshold doses of 300 µM min and 1000-1600 

µM min, respectively (Figure 4 D).  These findings may be related to the importance of p53-

dependent apoptosis in cytotoxic mechanisms (see below) and to the activation of the NRF2-
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KEAP1 signaling pathway to mitigate NO-mediated damage (see above), respectively.  NO 

production in macrophages stimulated by LPS and IFN-γ resulting in growth inhibition and 

impaired cell viability, which could be attenuated by addition of the NOS inhibitor, NMA [142].  

Moreover, co-culture of TK6 cells with stimulated macrophages also resulted in a substantial 

decrease in cell viability, both in the macrophages and the TK6 cells.  Again, application of NMA 

reduced cytotoxicity in both cell types, which verifies the role of NO in the induction of these 

responses [143]. 

These results provide strong evidence that local NO concentrations, as they exist in the 

vicinity of activated immune cells, can reach pathophysiological and cytotoxic levels in vivo.  

Mechanistic studies revealed that NO-mediated cytotoxicity is an extremely complex process 

involving several cell death pathways, including apoptosis and necrosis, depending on the cell 

type studied.  Potential mechanisms include energy depletion upon acotinase inhibition, lipid 

peroxidation and protein modification through nitrotyrosine formation [144].  However, the 

earliest cellular effects observed include the inhibition of DNA synthesis, most likely as a result 

of DNA damage, leading to cell cycle arrest and apoptosis induction [145].  Most of the cells, 

however, will experience sub-toxic doses of ROS and RNS, causing macromolecular damage.  

As discussed in the following sections if such damage occurs in DNA, this may lead to 

mutational events driving tumor initiation and progression. 

3.1 DNA damage during inflammatory bowel disease 

ROS and RNS-mediated DNA damage products span a wide range of reactions, including 

nitrosation, nitration, oxidation, and halogenation reactions (Figure 5), which are discussed in the 

following with a special emphasis on studies analyzing murine and human colitis.  For a more 

general overview of the chemical biology of oxidative and nitrosative DNA damage the reader is 

referred to more specific reviews on this topic [146,147]. 

3.1.1 Nitrosative deamination 

N2O3 which is thought to be the primary agent causing nitrosative deamination of DNA.  

Other mechanisms include spontaneous hydrolysis and enzymatic processes by deaminases.  

DNA damage products formed by nitrosative deamination include 2’-deoxy-uridine (dU) derived 

from cytosine, 2’-deoxy-inosine (dI) derived from adenine, 2’-deoxy-xanthosine (dX) or 2’-

deoxyoxanosine (dO) derived from guanine, and 2’-deoxythymidine (dT) derived from 
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methylcytosine [69,148] (Figure 5).  Due to their mutagenic potential, formation of these damage 

products is of high functional relevance.  For example, during replication formation of 

deamination products mainly cause single-base transition mutations such as A:T to G:C (dI), C:G 

to T:A (dU), and G:C to A:T transitions (dX).  In addition to deamination of exocyclic amines, 

nitrosation of heterocyclic nitrogens such as N7 or N3 in dA and N7 in dG can induce depurination 

creating abasic sites [149].  In an attempt to define the spectrum of nitrosative DNA lesions 

induced by RNS, purified DNA was exposed to NO (1.3 µM) and O2 (190 µM) [149].  

Subsequent quantification of several DNA adducts by stable isotope-dilution mass spectrometry 

revealed that dX, dI and dU were formed at nearly identical rates to the extent of ~80 lesions per 

106 nt after 12 h exposure to NO.  Furthermore, abasic sites were generated at a rate of ~10 per 

106 nt after 12 h of exposure to NO.  In combination with other studies, which demonstrated that 

nitrosative guanine deamination can lead to the formation of interstrand cross-links (see below) 

[150], it can be estimated that under these conditions the following spectrum of nitrosative DNA 

damage occurs:  25-35% each of dX, dI, and dU, 4-6% abasic sites and ~2% dG-dG cross-links 

[149].  In cell culture, a ~4-fold protective effect by the cellular environment was observed 

against the formation of dX, dI and dU.  Notably, significant elevations of these products of ~4-

fold were only observed when cells were exposed to cytotoxic doses of NO and N2O3 (i.e., 1.75 

µM NO and 186 µM O2 for >12 h) [135,151].  An earlier study detected a similar increase in dX 

levels of about ~6-fold using stimulated macrophages [152].  The slightly higher values obtained 

in the latter study may be related to the possibility that intracellular NO levels in stimulated 

macrophages as used in the study by Dong and Dedon may exceed local concentrations of 1-2 

µM [135,152].  In vivo, recent results obtained from H. hepaticus-infected Rag2-/- mice revealed 

a small increase in levels of dI in inflamed colon tissue by 26%, whereas similar levels of dX 

were observed in colitis-affected and control tissue [27]. 

Taken together, these results indicate that nitrosative deamination products arise in cells and 

tissues under conditions of inflammation, but the relatively small increases suggest either limited 

nitrosative chemistry in nuclear DNA or effective protection and repair mechanisms, both in cell 

culture models and in the mouse [27,135].  That this holds true for the human situation awaits 

further study. 
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3.1.2 DNA oxidation 

DNA can also be directly damaged by nucleobase oxidation by ONOO− and 

ONOOCO2
−derived oxidants such as OH•, NO2

•, and CO3
•- [148].  While ONOO- itself, mainly 

causes 2-deoxyribose oxidation (i.e., strand breaks) and some base oxidation, ONOOCO2
- causes 

mainly base oxidation [153].  Due to its low reduction potential, guanine represents the most 

vulnerable nucleobase, which shows DNA sequence- and agent-specific variations in damage 

chemistry [147,154-156].  Consequently, in vitro experiments demonstrated significant reactivity 

of ONOO- only with dG, leading to the formation of two major oxidation products, i.e., 8-oxo-

7,8-dihydro-2’-deoxy-guanosine (8-oxo-dG) and 8-nitro-dG [147,157] (Figure 5).  Apart from 

iNOS- and NADPH oxidase-dependent generation of ROS and RNS, which is thought to occur 

mainly in macrophages, nitration and oxidation of dG can be also be induced by neutrophils via 

MPO-dependent reactions that generate NO2
• [158,159].  8-oxo-dG and 8-nitro-dG are 

significantly more reactive with ONOO- than dG itself, however 8-nitro-dG is not stable and 

depurinates to 8-nitro-G generating an abasic site in the DNA backbone (t1/2 ~ 1 h at 37°C), 

which can cause base substitutions such as G à T transversions [147,157].  In contrast, 8-oxo-

dG is more stable than 8-nitro-dG, but exhibits a ~1,000-fold higher reactivity than dG and gives 

rise to more than 10 different secondary oxidation products [153].  It is important nonetheless to 

keep in mind that even a 1000-fold difference in the reactivity of dG and 8-oxo-dG means that 

dG is still the major target in cellular DNA when 8-oxo-dG is present at steady state levels of 1-

10 per 106 nucleotides [151,154].  Secondary dG oxidation products include 

spiroiminodiydantoin (Sp), guanidinohydantoin (Gh), and oxazalone (Ox), all of which have been 

extensively described in vitro [154,160-163].  In contrast to nitrosative DNA damage that mainly 

causes transition mutations, oxidative lesions tend to cause transversion mutations.  While 8-oxo-

dG itself can lead to C:G to A:T transversion mutations [164], secondary oxidation products such 

as Sp cause G:C to T:A and G:C to C:G transversions and can act as a strong inhibitor of DNA 

polymerase extension leading to replicative stress.  Similarly, Gh lesions are also highly 

mutagenic causing G:C to C:G transversions, though they can be bypassed nearly as efficiently as 

8-oxo-dG.  For both secondary damage products, mutation frequencies are at least an order of 

magnitude higher than for 8-oxo-dG [165]. 

Because of their promutagenic potential, significant biological consequences are expected if 

such primary and secondary oxidation products are formed in mammalian DNA in vivo.  While 
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8-oxo-dG is one of the most widely studied DNA damage lesions in vivo [166], data on the 

existence of guanine secondary oxidation products is not as abundant.  Our recent LC-MS/MS-

based study on a comprehensive set of inflammation-related DNA damage products in H. 

hepaticus-infected Rag2-/-  mice aimed to detect guanine secondary oxidation products in 

mammalian tissues.  In fact, Sp and Gh were detected in mouse liver and colon at absolute levels 

of ~1-5 lesions per 108 nucleotides, which are ~100 times lower than those of 8-oxo-dG.  

Interestingly, levels of Sp and Gh displayed tissue-specific differences and correlated strongly 

with their parent molecule 8-oxo-dG, indicating that these molecules indeed arise from 8-oxo-dG 

in vivo.  In this study, no strong influence of colitis induction on whole tissue levels of 8-oxo-dG 

and its secondary oxidation products was observed.  Thus, while 8-oxo-dG levels showed a slight 

and transient decrease during colitis development, levels of Sp tended to correlate positively with 

corresponding colonic histopathology indices, suggesting that these lesions may have biological 

significance during inflammation [27].  Similarly, Shaked et al. found modestly elevated levels of 

oxidative DNA damage lesions, such as 8,5′-cyclo-2′-deoxyadenosine (cdA) and 8,5′-cyclo-2′-

deoxyguanosine (cdG), in intestinal epithelium in a mouse model with constitutive induction of 

iNOS expression measured by LC-MS/MS analysis (see above) [32].  It is important to stress that 

these studies analyzed lesion frequencies in tissue samples.  Therefore, even small changes as 

detected in these studies may be related to more drastic effects on a single cell level.  Although 

immuno-chemical methods of DNA damage detection based on DNA-damage-specific antibody 

binding have their limitations such as lack of chemical specificity and high background signals, 

these methods allow assessment of DNA damage on a single cell level.  In this respect an 

analysis of an immunological colitis model detected elevated immuno-reactivity towards 8-oxo-

dG and 8-nitro-G in nuclei of epithelial cells.  These levels correlated with iNOS expression, 

suggesting a functional interplay between those factors [167].  Furthermore, stronger 8-oxo-dG 

immuno-reactivity was also detected in colonic epithelia of DSS-treated mice - an effect that 

could be almost completely suppressed by ectopic expression of extracellular SOD, which also 

considerably improved disease severity [61].  Interestingly, systemic effects of oxidative DNA 

damage were identified in mouse models of DSS-induced and immune mediated colitis using Il-

10-/- mice: circulating blood leukocytes isolated from diseased mice showed significantly 

increased 8-oxo-dG immuno-reactivity, which correlated to oxidative damage detected in 

inflamed tissue [168].  Such systemic effecs may be related to activation of circulating innate 
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immune cells and other factors or through the effect of circulating cytokines and acute phase 

proteins that autonomously induce oxidative stress in circulating peripheral cells [168]. 

There is also considerable evidence for the formation of oxidative damage during human 

IBD.  For example, using the reduced-thiol-specific probe 14C-iodoacetamide (IAM), McKenzie 

et al. examined the thiol redox status as an indicator of oxidative protein damage and detected 

increased levels of oxidated thiol groups in colon epithelial crypt cells from IBD patients [169]. 

Furthermore, higher levels of 8-oxo-dG were detected in colorectal tumor tissue [114] and in 

inflamed tissues and tumors from patients with ulcerative colitis [170].  However, results from 

the latter study must be interpreted with caution, since it reported absolute values of >1 lesion/104 

bp, which is at least two orders of magnitude higher than widely established basal levels and 

raises the possibility of adventitious oxidation during sample manipulation [170].  Interestingly, 

genomic hot-spots of oxidative DNA damage seem to  exist, which is evident by the findings that 

p53 and TGF-β genes in H. pylori-infected individuals showed higher levels of oxidative damage 

than BAX and β-ACTIN, as analyzed by an OGG1-based PCR method [171].  The basis for this 

observation awaits further clarification, but may include sequence-specific events, the 

transcriptional or replicative state of the gene locus, the nature of the damaging agent, or the type 

of DNA lesion [171]. 

In summary, a large body of evidence demonstrates that oxidative damage to DNA plays an 

important role during CAC, but so far the exact mechanisms are poorly understood.  Another 

level of complexity is added by the recent finding that oxidatively-induced DNA damage may 

also interfere with epigenetic mechanisms that contribute to CAC.  In this respect, O’Hagan et al. 

reported that, in cells treated with H2O2 and in a mouse model of acute colitis, oxidative stress 

causes enrichment of members of the silencing complex including DNMT1 at promoter CpG 

islands, which may be related to a role of DNMT1 in DNA repair.  This may result in epigenetic 

alterations in affected cells [172]. 

3.1.3 Lipid peroxidation-induced damage 

Apart from direct oxidative damage, DNA nucleobases can be damaged by oxidation 

products arising from lipid peroxidation of polyunsaturated fatty acids.  For example, 

peroxidation of linoleic acid gives rise to several α,β-unsaturated aldehydes, such as trans-4-

hydroxy-2-nonenal (4-HNE), acrolein, and malondialdehyde (MDA), which can react with 
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nucleobases to form exocyclic etheno adducts, such as 1-N6-2’-deoxy-ethenoadenosine (εdA) and 

3-N4-2’-deoxy-ethenocytidine (3-N4-εdC), glyoxal adducts, and a series of other adducts [69,135] 

(Figure 5).  Several repair mechanisms exist that act on lipid peroxidation products, including 

base excision repair, direct reversal by AlkB family proteins, nucleotide excision repair and 

homologous recombination (see below) [173].  If persistent, lipid peroxidation adducts exhibit 

strong promutagenic potential causing transversion and transition mutations, depending on the 

nature of the adduct.  Additonally, lipid peroxidation adducts can interfere with DNA replication 

and gene transcription, thereby contributing to cytotoxicity. 

Elevated levels of these adducts were identified in several inflammatory conditions.  Strong 

evidence for sustained formation of lipid peroxidation adducts comes from the SJL mouse model 

of NO overproduction, in which RcsX-tumor bearing SJL mice develop severe inflammation in 

the spleen and liver.  Increased levels of DNA etheno adducts were not only observed in liver and 

spleen, but also in kidney, which again points to systemic effects, since the kidney is not 

considered a primary target of inflammation in this model [174].  Increases in etheno adducts 

were also observed in DSS-induced colitis in mice [175] and in tissues from patients with 

Crohn’s disease and ulcerative colitis [173,176-178].  Increased levels of 4-HNE and MDA have 

been detected in biopsies from colorectal cancers, and were associated with dysregulation of 

antioxidant factors such as GPx1-3, SOD1, and GSH.  This illustrates the pleiotropic cellular 

consequences of conditions of oxidative stress [114].  In addition to iNOS-dependent initiation of 

lipid peroxidation, this process may be also driven by MPO, as  evident from the finding that 

Mpo-/- mice generated less lipid peroxidation intermediates compared to wild-type mice in a 

peritonitis model [179].  H2O2 may also play a significant role in the initiation of the lipid 

peroxidation cascade during colitis, since DSS-treated mice with ectopic expression of EC-SOD 

displayed lower levels of MDA compared to untreated controls as evaluated by 

immunohistochemical staining of mucosal epithelial cells [61]. 

Paradoxically, several studies reported decreased levels of lipid peroxidation products in the 

course of inflammatory diseases.  For example, Godschalk et al. detected decreased levels of 

lipid peroxidation-induced DNA damage in the onset of atherogenesis in apolipoprotein E 

deficient mice [180].  These results are similar to those in H. hepaticus-induced colitis, which 

revealed transiently reduced levels of DNA-etheno adducts in the course of the disease.  The 

finding that levels in RNA remained unaffected suggests that either DNA repair or protective 
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effects of the nuclear environment underlie the transient decrease in etheno adducts, rather than 

changes in the cellular radical load.  Inconsistent results were also obtained in human studies, in 

which lower levels of etheno adducts were detected in peripheral blood lymphocytes from 

patients with colorectal cancer.  In this study, mRNA levels of some repair enzymes (i.e., 

glycosylases and APE1) were higher in peripheral blood lymphocytes of colon cancer patients 

than those of controls, but did not lead to higher excision rates of etheno adducts.  In contrast, in 

target colon tissues, excision rates of etheno-adducts were higher compared to control tissue, 

while levels of DNA etheno adducts were lower in tumors than in non-tumorigenic tissue, 

pointing to complex local and time-dependent changes in adduct levels during disease 

development [181]. 

In summary,  alterations in lipid peroxidation adducts have been reported in several mouse 

models of colitis as well as in human disease, however these changes exhibit a dynamic nature 

and are highly dependent on the model and condition analyzed.  The molecular bases for these 

inconsistencies remain unclear, but may be related to dynamic regulation of the repair 

efficiencies of these adducts. 

3.1.4 Halogenation-induced damage 

The reaction of nucleobases with MPO-derived HOCl leads to the formation of products 

such as 5-chloro-2’-deoxy-cytidine (5-Cl-dC), 5-chloro-2’-deoxy-uridine (5-Cl-dU), as a 

deamination product of 5-Cl-dC, 8-chloro-2’-deoxy-guanine (8-Cl-dG), as well as dihalogenated 

nucleobases (Figure 5).  All of these molecules have been detected in cellular RNA as well as in 

murine and human DNA under inflammatory conditions, such as sepsis and atherosclerosis, and 

were therefore proposed as potential biomarkers of inflammatory diseases [182-189].  Of note, 

following LPS treatment, 8-Cl-dG was only observed in the liver of wild-type but not of Mpo-/- 

mice, which indicates that in vivo formation of halogenation damage predominantly depends on 

this enzyme [182].  Repair mechanisms for these adducts are poorly characterized, but potentially 

rely on base excision repair (BER), since free base adducts, such as 8-Cl-dG, were detected in 

urine of LPS-treated rats [182].  In particular, 5-Cl-dC appears to be of biological relevance, 

since it mimics 5-methylcytosine and thereby enhances binding of the binding domain of methyl-

CpG-binding protein 2 (MeCP2) and serves as a substrate for DNMT1 [190,191].  It is plausible 

that, within a CpG sequence context, this results in heritable, reversible gene silencing, with 

altered cytosine methylation patterns providing a potential link between inflammation, epigenetic 
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changes, and tumor initiation [192].  CpG hypermethylation has been associated with CAC 

revealing high methylation frequencies in several genes, including the tumor suppressor p16 (see 

below) [193].  Hypermethylation was also present in non-dysplastic, normal-appearing 

epithelium from patients with ulcerative colitis, but not from control individuals, indicating that 

methylation precedes dysplasia [193].  In this context, it is interesting to note that a 

polymorphism in the MPO gene (G463A) associated with reduced MPO mRNA expression 

reduces the risk for lung cancer development [194-196].  Regarding formation of chlorination 

adducts during murine colitis, our recent studies in H. hepaticus-infected Rag2-/- mice 

demonstrated significantly elevated levels of adducts in DNA (5-Cl-dC) and RNA (5-Cl-rC) in 

colitis-affected mice [27].  While increases in DNA and RNA were modest (~25%), more drastic 

changes were observed on the protein level, with 3-Cl-Tyr levels below the limit of detection in 

control mice, but clearly detectable in all H. hepaticus-infected mice at 20 weeks post infection 

[29].  These results indicate that either proteins are more accessible to damage induction and/or 

damaged nucleic acids are less stable (RNA) or efficiently repaired (DNA).  Nevertheless, it is 

important to note that mild increases in damage levels in whole colonic DNA may correspond to 

drastic changes on a single cell level, potentially contributing to cellular transformation and colon 

cancer development in H. hepaticus-infected Rag2-/- mice.  In this context, it would be interesting 

to determine whether changes in methylation patterns are generated in colitis induced in Mpo-/- 

mice.  We recently detected 5-Cl-dC in colon biopsies from IBD patients, levels of which were in 

the same range of those found in Rag2-/- mice [29], but have not yet analyzed in non-inflamed 

tissues from unaffected individuals for comparison. 

3.1.5 Crosslinks, double strand breaks and chromosomal aberrations 

Apart from small base lesions, inflammation-induced reactive chemical species can also 

cause more complex DNA adducts, such as crosslinks, and genomic aberrations, such as strand 

breaks and chromosomal rearrangements (Figure 5).  Crosslinks can arise as by-products of 

lipid-peroxidation, such as acrolein and crotonaldehyde R, β-unsaturated aldehydes [197-199], 

but were also observed in an in vitro system using an oligonucleotide treated with NO.  In the 

latter system, the proportion of crosslinks reached levels up to 6% of the amount of deamination 

products [200].  Such levels may be of pathophysiological significance, since DNA crosslinks are 

potently toxic lesions; this is the mode of action of many highly toxic cancer chemotherapeutic 

agents.  Special interstrand crosslink repair mechanisms exist that function at the interface of 
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nucleotide excision repair and homologous recombination and are promoted by Fanconi anemia-

related genes [199].  If not repaired, DNA crosslinks may interfere with the transcriptional and 

replication machinery as well as with chromosomal segregation, thereby potentially supporting 

genetic instability and tumor development.  Not only DNA intra- and interstrand crosslinks may 

be of toxicological relevance, but also DNA-protein crosslinks are expected to have a major 

impact on genetic stability and gene transcription [199].  Other types of damage that affect the 

integrity of DNA include strand breaks potentially causing chromosomal rearrangements and 

aberrations.  Double strand breaks (DSB) were detected upon NO delivery to cells in culture, 

even at sublethal doses when other types of damage products, such as deamination products, were 

not yet obvious, suggesting that those may be also useful markers in vivo.  Substantial evidence 

has demonstrated that NO-induced DSB arise mainly through enzymatic processes during the 

repair of primary DNA lesions, since neither N2O3 nor ONOO- are able to cause DSB by direct 

reaction with DNA.  Thus, a likely scenario includes that primary base lesions or abasic sites are 

repaired by BER during which single strand breaks (SSB) are introduced that may convert to 

DSB when occurring in close proximity to each other or when the replication fork approaches the 

SSB during DNA replication [136,201].  Li et al. reported that the formation of DSB was 

accompanied by increased frequencies of sister chromatid exchanges (SCE), which represent 

major chromosomal aberrations associated with cell transformation [136].  SCE are caused by 

chromosomal rearrangements occurring during homologous recombination in an attempt to repair 

DSB.  It was found that ONOO-, but not N2O3, acts as a potent inducer of HR [202].  This is in 

line with the fact that N2O3 is a potent DNA deaminating agent, whereas ONOO- is a potent DNA 

oxidizing agent that acts mainly on DNA bases and sugar moieties.  Consequently, it was shown 

that oxidatively-induced DNA damage exhibit a higher recombinogenic potential than nitrosative 

deamination damage [202].  This was interpreted to be due to the fact that DNA oxidation 

produces recombinogenic strand breaks by both direct attack on the sugar-phosphate backbone 

and indirectly during BER repair of oxidized bases, while nitrosative damage does not involve 

strand breaks [202].  As a consequence, such recombinogenic processes can lead to sequence 

rearrangements that can drive carcinogenesis during inflammation. 

Support for a potential role of strand breaks during CAC in vivo comes from a study 

analyzing TNBS-induced colitis in rats [57].  Using a PCR approach, Choi et al. demonstrated 

that strand breaks were introduced in specific sequences of gene promoter regions.  This was 



31 
 

accompanied by increased phosphorylation of the histone variant H2A.X, which is considered a 

marker for the DSB response, in colonic smooth muscle cells [57].  These findings are consistent 

with gene expression studies in H. hepaticus-infected Rag2-/- mice, which revealed a robust up-

regulation of the DNA-damage-signaling and senescence marker Cdkna2 (p16) pointing to the 

induction of DSB in inflamed tissue of infection-induced murine colitis [27].  Usually p16 is up-

regulated in premalignant lesions as a mechanism to suppress tumor development and expression 

is subsequently lost in invasive colon carcinomas by Cdkn2a hypermethylation both in 

spontaneous colorectal cancer and in CAC (see below) [203-206].  As observed for other damage 

products, DNA strand breaks and gross chromosomal aberrations were also observed in 

peripheral blood cells as well as in other extra-intestinal tissues, such as lymphoid organs and 

liver, in chemical and immune-mediated mouse models of colitis with damage levels correlating 

with disease severity [168,207].  This is in line with results from H. hepaticus-infected Rag2-/- 

mice showing strong p16 induction, not only in the colon, but also in liver tissue [27].  Whether 

this is of any significance with regard to cancer development in tissues other than intestine needs 

to be evaluated, but results from H. hepaticus-infected Rag2-/- mice point to a transient induction 

of hepatitis presumably as a consequence of colitis development. 

Systemic effects of colitis on genetic instability were also observed in human patients.  

Significantly higher SCE levels were reported in peripheral blood lymphocytes from patients 

with Crohn’s disease compared to control subjects, and a significant positive correlation exists 

between SCE levels and disease severity [208].  Human studies also revealed multiple lines of 

evidence for a casual relationship between genetic instability and colon cancer development.  

Rabinovitch et al. showed that chromosomal instability is present throughout the colon of 

patients with ulcerative colitis and high grade dysplasia or cancer [209].  More importantly, 

chromosomal abnormalities affected the entire colon and were even present in non-dysplastic 

biopsies.  Analysis of chromosomal instability was sufficient to fully differentiate these ulcerative 

colitis biopsies from control biopsies.  However, further studies are needed to assess whether 

these markers of genomic instability will serve as prospective indicators of cancer risk in IBD 

[210].  Follow-up studies revealed that chromosomal abnormalities are at least in part related to 

telomere shortening [210-212].  This result is consistent with the findings that oxidative stress 

leads to greatly accelerated telomere attrition [213].  In particular, it was shown that telomeres 

shorten with age almost twice as rapidly in patients with ulcerative colitis as in normal controls 
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with extensive telomere shortening occurring within the first 8 years of disease duration [212].  In 

addition, epithelial cells from colon biopsies from patients with active ulcerative colitis revealed 

increased phosphorylation of H2A.X and higher frequencies of anaphase bridges, which are 

associated with non-resolved chromosomes during mitosis [210,212].  Anaphase bridges are a 

hallmark of telomere dysfunction and can lead to gross chromosomal rearrangements, including 

chromosome losses and gains.  Since genetic instability precedes cancer formation, this may 

contribute to a mutator and genetic instability phenotype, as it is characteristic for neoplastic 

progression in general.  The finding that genomic instability affected the entire colon of patients 

with ulcerative colitis is consistent with the multifocal occurrence of tumor development under 

these conditions.  A recent study in patients with ulcerative colitis correlated factors of 

inflammation, genetic instability and cellular senescence, revealing that high levels of infiltrating 

leukocytes were associated with increased telomere shortening, DNA damage (γ-H2A.X), and 

cellular senescence.  This provides important evidence that senescence acts as a tumor suppressor 

mechanism that is abrogated during the transition from low grade to high grade dysplastic tissue 

[211]. 

Thus, these studies suggest that colitis-associated colon cancer arises in a preneoplastic 

environment of inflammation-driven genetic instability, apoptosis, and cellular senescence. 

3.2 DNA repair and DNA damage response 

To assess the functional relevance of DNA damage during colitis with respect to disease and 

cancer development, a useful approach is to interfere with mechanisms that repair such lesions.  

Several studies have addressed this issue and impressively demonstrated the functional role of 

multiple repair mechanisms, including mismatch repair, base excision repair, dealkylation repair, 

and general DNA damage response in the maintenance of colonic homeostasis and prevention of 

CAC. 

DNA mismatch repair (MMR) is a repair mechanism active when replication errors occur, 

but also when damaged bases mispair with their counterparts.  One of the most important proteins 

in MMR is MSH2, which participates in damage recognition as part of the MutSα and MutSβ 

complex.  When Msh2-/- mice were subjected to chronic DSS-induced colitis, they developed a 

~4-fold higher frequency of high-grade dysplasia and a 2-fold higher susceptibility to the 

development of colon tumors than controls [214].  In contrast to wild-type mice, the majority of 
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Msh2-/- mice developed tumors with a microsatellite instability phenotype, indicative of MMR 

defects.  Of note, this instability appeared also in non-neoplastic tissue, presumably due to 

increased inflammation-induced cell proliferation [214].  Microsatellite instability was also found 

in patients with ulcerative colitis, in both tumor and in premalignant tissue that had no 

histological evidence of neoplastic change.  Thus, in this setting microsatellite instability may 

reflect the inability of MMR to compensate for damage resulting from chronic inflammation, and 

may contribute to malignant cellular transformation and increased cancer risk in patients with 

ulcerative colitis [215].  However, as Kohonen-Corish et al. point out, although MMR 

predisposes to inflammation-induced tumor formation in mice, it is obviously not the only factor 

involved, since not only Msh2-/- but also ~30% of wild-type mice developed tumors [214].   Liao 

et al. showed that in Ogg1-/- mice, which lack the DNA glycosylase responsible for the excision 

of 8-oxo-dG as an initial step during BER, DSS-induced colitis leads to twice as many colorectal 

adenocarcinomas than observed in wild-type mice.  This outcome was partially independent of 

potential differences in disease severity, since Ogg1-/- and wild-type mice exhibited similar 

numbers of infiltrating macrophages.  Importantly, quantities of 8-oxo-dG were considerably 

increased in inflammatory and epithelial cells in Ogg1-/- mice [216]. 

Another DNA glycosylase involved in the removal of small base adducts, such as methylated 

bases, hypoxanthine and base ethenoadducts is alkyladenine DNA glycosylase (AAG, also 

known as MPG).  Exposure of Aag-/- mice to DSS-induced colitis led to a higher accumulation of 

etheno adducts and oxidative base lesions in colonic DNA.  This was accompanied by more 

pronounced colonic epithelial damage and higher cancer rates, indicating that AAG-mediated 

DNA repair contributes to tumor-protective mechanisms in DSS-induced colitis [175].  

Impressively, when combined with genetic deletions of Alkbh2 and Alkbh3, which are also 

involved in the repair of DNA etheno adducts, the triple knock-out mice were unable to survive a 

single DSS application (administered alone or in combination with AOM), indicating that AAG, 

ALKBH2 and ALKBH3 are crucial to maintain colon homeostasis and whole-animal survival 

during acute inflammatory conditions.  Triple knock-out mice also exhibited decreased 

histopathology scores, indicating that a functional DNA damage response is important to trigger 

full tissue inflammation.  It is important to note that DSS itself does not induced DNA damage 

and that the observed effects can be attributed to tissue response mechanisms.  This is evidenced 

by the finding that when triple knockout mice were exposed to alkylating agents such as AOM 
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and MMS alone, this did not affect their ability to survive the stimulus, highlighting the 

importance of inflammatory mechanisms in the observed response.  The observed sensitivity of 

the triple knock-out mice seems to be dependent on the nature of the inflammatory trigger and the 

organ affected, since they were also sensitive to LPS-induced sepsis, but showed similar 

responses as wild-type mice to cerulein, which induces pancreatitis.  This may be related to the 

fact that DSS colitis and LPS-induced inflammation act through TLR-signaling, while cerulein 

induces pancreatitis via cholecystokinin receptor signaling [217].  Changes in BER were also 

observed in non-cancerous tissues from patients with ulcerative colitis.  Hofseth et al reported 

that levels of AAG and APE1 were elevated in inflamed tissue and that this was positively 

correlated with microsatellite instability indicating that proper balance of repair enzyme activities 

is essential to maintain genomic stability [218].  Similarly, Mutamba et al. showed that 

overexpression of AAG rendered XRCC1-deficient cells sensitive to NO-induced DNA damage 

[219].  ROS and RNS dependent mechanisms may also lead to inactivation of DNA repair 

mechanisms, since our recent study in H. hepaticus- infected Rag2-/- mice revealed that inflamed 

colons showed globally lower expression levels of DNA repair factors [27].  Several other studies 

have also reported impairments in DNA repair mechanisms during inflammatory conditions [220-

222].  Such changes may be caused by epigenetic silencing [221,222] or by direct inhibition via 

ROS and RNS-induced chemical modifications [223-227].  Furthermore, ROS and RNS-

independent mechanisms may also contribute to changes in the expression levels of DNA repair 

factors.  Kim et al. demonstrated that exposure of gastric cancer cell lines to co-culture with 

extracts of H. pylori led to decreased levels of MutS and MutL DNA MMR proteins in a dose-

dependent manner.  Reduction in MMR protein levels was caused by heat-sensitive H. pylori 

products, but the nature of these products is not known [228]. 

Apart from DNA repair, DNA damage signaling also contributes to the stress response 

during colitis.  For example, Westbrook and Schiestl reported that Atm-/- mice exhibit an 

increased sensitivity to DSS-induced colitis that was associated with elevated DNA damage 

levels and persistent immune activation [229].  Further, these mice displayed higher levels of 

tissue damage, up-regulation of pro-inflammatory cytokines, and increased levels of 8-oxo-dG, 

again indicating a positive feedback mechanism of DNA damage, signaling and inflammatory 

response [229].  Cell culture experiments demonstrated that NO activates ATM (and ATR) 

signaling which triggered the activation of downstream targets such as p53.  This can lead to p53 
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stabilization and its nuclear accumulation, where it regulates DNA repair, cell cycle progression 

and cell survival/death [230].  Such DNA damage response signaling was also identified in non-

cancerous tissue from patients with ulcerative colitis, showing that iNOS gene expression 

positively correlates with p53 serine 15 phosphorylation levels and activation of p53-dependent 

downstream targets such as p21 [230].  Consistent with its general role as a master switch in 

tumor suppressive mechanisms, p53-/- mice are prone to tumor development in a model of DSS-

induced colitis [231], indicating that inactivation of p53 acts as a common mechanism of 

malignant transformation in CAC [232-237].  Such an inactivation of p53 and other tumor 

suppressors as well as activation of oncogenes can arise through DNA damage-dependent base 

mispairing and generation of loss-of-function as well as gain-of-function mutations leading to 

cellular transformation. 

In the next section we will summarize initial attempts to link the formation of DNA damage 

products to the occurrence of genetic mutations that initiate and drive carcinogenesis. 

3.3 Mutagenicity 

Several studies focused on the conversion of ROS and RNS-mediated DNA damage into 

gene mutations thought to be a prerequisite for malignant transformation of cells [136,141,238-

240].  A recent study demonstrated that when cells were exposed to NO delivered by Silastic 

tubing into the medium, this resulted in about 5-fold higher mutation frequencies in several cell 

types (TK6, AS52) at different genetic loci (HPRT, TK1) [241].  When Chinese hamster ovary 

(CHO) AS52 cells that carry a single genomic copy of the E. coli xanthine-guanine 

phosphoribosyltransferase (gpt) as a reporter gene were exposed to activated macrophages, the 

mutation frequency in the genetic target cell was enhanced by more than 9-fold compared to 

background levels.  Application of the NOS inhibitor NMA and the O2
•- scavenger Tiron, 

completely prevented this response, indicating the importance of NO• in the induction of these 

mutations.  In an attempt to identify mutational fingerprints indicative of the spectrum of reactive 

chemical species, sequencing studies revealed that base substitutions dominate the mutation 

spectra, with transversion mutations (30-40%) being more prevalent than transition mutations 

(10-20%).  Deletion mutations occurred at a lower frequency in mutants exposed to activated 

macrophages (20%) than in spontaneous mutants (~50%).  These results suggest that small base-

damage adducts, as induced by oxidation and nitrosative deamination, rather than erroneous 

repaired DSB cause increased mutation frequencies under these conditions.  Almost all mutations 
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occurred at guanine sites leading to G:C to T:A transversions (~30%) and G:C to A:T transitions 

(10-20%).  Notably, this led to functional consequences as the frequency of gene inactivation 

doubled in cells exposed to gaseous NO• or to activated macrophages affecting 40% of induced 

mutants vs 20% of spontaneous mutants. 

These results are consistent with those obtained from in vivo studies analyzing gastric tissue 

of gpt δ mice infected with H. pylori [242].  These mice harbor tandem arrays of 80 copies of the 

gpt reporter gene at a single genetic locus on chromosome 17.  Mutation frequencies were 

significantly higher in H. pylori-infected female mice, which displayed a mutation spectrum 

consistent with the expected spectrum induced by ROS and RNS: ~4 times more A:T to G:C 

transitions and ~2 times more G:C to T:A transversions than in uninfected controls.  Similarly to 

the in vitro model, no increase in the frequency of deletions was observed.  A notable difference, 

however, was the higher frequency of A:T to G:C transitions in the H. pylori in vivo model, 

which may arise from deamination of adenine, mediated by N2O3 leading to hypoxanthine which 

mispairs with cytosine; or, alternatively through ROS and RNS-induced lipid peroxidation 

products leading to highly mutagenic ethenoadenine [241,242].  Similar results were obtained in 

a colitis model using Il-10-/- mice in combination with a transgenic gpt gene [243], in which the 

total mutation frequency in the colon of gpt+/Il-10-/- mice was ~5-times higher than in gpt+/Il-

10+/+ control mice.  Similarly to the H. pylori model, transition and transversion mutations 

dominated the mutation spectrum and were around ~4-fold higher in gpt+/Il-10-/- mice compared 

to controls.  However, in contrast to the H. pylori model, the frequency of small deletions and 

insertions was also increased in inflamed tissue by ~10-fold, indicating organ- and disease-

specific induction of mutation spectra which point to differences in the nature of reactive 

chemical species formed during inflammation [243].  Consistent with these results, similar 

mutation spectra were identified in APC and p53 tumor suppressor genes, and K-ras oncogenes 

dysplastic tissue of patients with ulcerative colitis [237,244,245].  These studies revealed a 

positive correlation between iNOS activity and increased frequencies in p53 transition mutations 

in colitis and colon cancer, suggesting that ROS and RNS are able to induce DNA damage 

products that can cause mutation in genes relevant for tumor development [237,245].  Concerning 

the cell-types which are at the highest risk to accumulate such mutations, computational models 

predict that stem cells near the base of the crypt are exposed to the highest concentrations of NO.  

In contrast to migrating epithelial cells, any oncogenic mutation in stem cells could accumulate 
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over time, eventually leading to cellular transformation [72].  This is in accordance with 

experimental studies showing that crypt stem cells represent the cells-of-origin for colon cancer 

development [20]. 

Further studies will be required to define the exact spectrum of reactive chemical species that 

induce the observed mutational profiles.  Mouse models with constitutive or tissue-specific 

deficiencies in genes that are responsible for the generation of reactive chemical species (e.g., 

iNos, Mpo, NADPH oxidases, etc.) represent a possible tool to answer this question. 

3.4 Microbial-induced genotoxicity 

In considering causative parameters of genotoxicity, the potential contribution of the gut 

microbiota, which harbor up to 100 trillion bacteria, needs to be taken into account [246].  While 

it is beyond the scope of this review to discuss the various contributions of gut bacteria during 

colonic inflammation (reviewed in [247]), some studies elucidating the role of the gut microbiota 

on genomic stability of host cells deserve mention.  Many mouse models of colitis and 

inflammation-induced carcinogenesis rely on the presence of an active gut microbiome, since 

germ-free mice do not develop colitis nor do they show significantly increased tumor frequencies 

in several colon carcinogenesis models [247].  Further, imbalance of the gut microbiota, termed 

dysbiosis, is sufficient to induce colitis in specific mouse strains, as noted for the H. hepaticus-

infection model.  To date two mechanisms have been identified regarding microbiotic factors 

directly contributing to genotoxicity in host cells.  Huycke et al. showed that the commensal 

microorganism, Enterococcus faecalis, produces substantial levels of extracellular O2
-• and other 

ROS derivatives, through autooxidation of membrane-associated demethylmenaquinone and 

subsequent activation of host macrophages [248,249].  When mammalian cells and rats were 

colonized with O2
-•-producing E. faecalis, significantly higher levels of DNA strand breaks were 

found than in control rats colonized with a mutant form, resulting in increased levels of 

chromosomal instability [250,251].  Some bacteria, including Helicobacter and pks+ E. coli 

produce genotoxins such as cytolethal distending toxin (CDT) and colibactin, respectively.  

These toxins cause DNA SSB that accumulate as DSB, enhance cellular mutation frequencies 

and genomic instability that may promote malignant transformation of host cells [252-255].  Two 

recent studies suggest that colonic inflammation leads to a shift of the microbial composition 

towards facultative anaerobic bacteria such as Enterobacteriaceae, including colibactin-

generating E. coli [246,256,257].  Specifically, Winter et al. showed that iNOS-derived nitrate 
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generated during inflammation conferred a growth advantage to E. coli by anaerobic nitrate 

respiration– an effect that was not observed in iNos-/- mice [246,257]. 

4 Conclusions 

The studies discussed in this review demonstrate the critical role played by chemical 

mediators of inflammation in linking inflammation to colon cancer (Figure 2 and 6).  Damage 

products covering the full spectrum of inflammation-related chemistries have been detected 

during colonic inflammation, notably in many cases at stages that clearly precede cancer 

formation (Figure 5).  Consequently, some of these damage products may be included in a yet to 

be defined set of disease biomarkers to assess the individual status and cancer risk of IBD 

patients.  Furthermore, mutational analyses and studies from DNA repair-deficient mice indicate 

that DNA damage products are of functional relevance in the etiology of CAC.  Taken together, it 

is very likely that inflammation-related chemical species induce genetic and epigenetic alterations 

that affect molecular mechanisms involved in tumor initiation and progression during CAC 

(Figure 6). 

Despite the large body of evidence linking colonic inflammation to DNA damage and 

carcinogenesis, many of the studies rely on correlative data, with few mechanistic studies that 

evaluate the functional relevance of inflammation-induced DNA damage.  In this respect, the 

question of the role of DNA modifications as cytotoxic products that drive replication-dependent 

mutagenesis or as directly mutagenic species in their own right remains to be answered.  

Moreover, the dynamics of genetic and epigenetic alterations and the role of repair pathways 

need to be defined in greater detail.  In many respects, the holes in our knowledge result from 

limitations of current methods to map and quantify DNA lesions.  That is, methods effective on a 

single cell level (e.g., antibodies) often lack chemical specificity, while methods of high chemical 

specificity (e.g., LC-MS/MS) are currently not sensitive enough to be used in single cell analyses.  

This motivates the development of methods capable of mapping sites of DNA damage genome-

wide, ideally in a real-time, dynamic manner.  Such methods could be employed to define the 

whole adductome of DNA lesions in a genome-wide manner and to determine the contribution of 

the individual types of damage to induce gene mutations in different types and stages of IBD.  A 

first step in this direction has been taking recently in a proof-of-principle study by employing 

nanopore sequencing technology to detect guanine primary and secondary oxidation damage in a 

polymeric DNA sequence context [258,259].  In addition, further progress in defining the 
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mechanistic link between IBD and cancer will be made by large-scale sequencing analysis of 

genetic and epigenetic changes occurring during inflammation-induced carcinogenesis and by 

developing mouse models of constitutive or conditional deletions of enzymes involved in the 

generation of ROS and RNS, such as iNOS, NADPH oxidases, MPO, and XOR.  With respect to 

the latter point, it is worth mentioning that, despite the finding that gene regulatory mechanisms 

during some inflammatory diseases show weak conservation between a specific mouse strain and 

humans [23], the data reviewed here demonstrate that this may not be the case for expression and 

activation of enzymes generating reactive chemical species, and in particular, not for the damage 

products that arise from these species.  Indeed, many classes of macromolecular damage products 

arise during both murine colitis and human IBD (Table 2).  Therefore, in addition to efforts to 

modulate immunological mechanisms to treat IBD [260], it is worth considering other factors as 

potential therapeutic targets, such bacterial genotoxins and enzymes producing or scavenging 

reactive chemical species.  The fact that it usually takes decades from the onset of IBD to the first 

occurrence of neoplastic lesions opens a significant time window for therapeutic intervention to 

prevent tumor development.  A detailed understanding of the chemical and biological 

mechanisms underlying the etiology of colitis associated carcinogenesis lays the foundation for 

the development of such strategies. 
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TABLES 

Table 1: Common mouse models of colitis-associated carcinogenesis. For more detailed reviews on mouse 

models of IBD see [261-263].  

Model Specification Mechanism Reference 

DSS Chemical-induced 

(Supplementation 
of drinking water) 

Disruption of the epithelial barrier. DSS polymers are not 
genotoxic, but directly toxic to colonic epithelial cells of the 
basal crypts. Protocols exist for acute and chronic colitis. 
Colitis induced within 2 (acute) to 8 (chronic) weeks. 
Development of dysplasia and colon cancers requires several 
months. In the acute phase inflammation is mainly driven by 
innate immunity. 

[264] 

DSS + AOM Chemical-induced 

(Supplementation 
of drinking water) 

Carcinogen-induced. Initial dose of AOM in combination 
with DSS. Bioactivation of AOM to mutagenic 
methyldiazonium ion. Tumor formation within 10 weeks. 
Useful to study the role of inflammation after carcinogen-
induced tumor-initiation. 

[265] 

TNBS in 
ethanol 

Chemical-induced 
(intrarectal 
administration) 

Hapten-induced hypersensitivity. Activation of a T-cell-
mediated response against hapten-modified autologous 
proteins/luminal antigens. Protocols for acute and chronic 
colitis. Colitis induced within 2 weeks. Inflammation 
dependent on innate and adaptive immunity (Th1- and Th17-

[264] 
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type). 

Il-10-/- mice Genetic Disruption of anti-inflammatory signaling. Mild disease 
progression. Development of a spontaneous CD4+ Th1-driven 
enterocolitis. Dependent on IFN-γ in the initial phase and Il12 
for disease progression. Development of adenocarcinoma after 
~6 months. 

[266,267] 

Gpx1/2-/- mice Genetic Interference with antioxidant response. GPx1/2 detoxify 
H2O2 by glutathione oxidation. Development of ileocolitis 
between 2-7 weeks of age. Dysplasia and adenocarcinoma 
after ~4 months. 

[120] 

H.h.-infected 
Rag2-/-mice 

Genetic + infection Lack of adaptive immunity causes disturbed pathogen 
response. Induction of chronic typhlocolitis 10 weeks p.i. 
with first occurrence of colon carcinomas 20 weeks p.i.  Since 
Rag2-/- mice lack adaptive immunity, inflammation is driven 
by innate immunity. 

[25-28] 

AOM, azoxymethane; DSS, dextran sodium sulfate; TNBS, 2,4,6-trinitro benzene sulfonic acid; GPx, 

glutathione peroxidase; H.h., Helicobacter hepaticus; p.i., post infection. 
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Table 2. Comparison of mouse and human studies on parameters of immunological chemistry and 

genotoxicology. 

Parameter Mouse (model system) Human 
Infiltration of neutrophils 
and macrophages 

↑ 
[37] (acetic acid), [39] (TNBS) 
[38] (Il10-/), [26,27] (H.h. Rag2-/-), [104] (C.r ) 

↑ 
[1] 

Induction of NADPH ox 
expression 

↑ 
[27] (H.h. Rag2-/-) 

↑ 
[46,47] 

Induction of XOR 
expression 

↑ 
[27] (H.h. Rag2-/-) 

n.c. [53] 

Induction of iNOS 
expression 

↑ 
[37] (acetic acid), [39,77,97] (TNBS), [78,86] 
(DSS), [38] (Il10-/-), [26,27] (H.h. Rag2-/-) 

↑ 
[53,73,74,93,94,96,98,99,268-
270] 

Induction of MPO 
expression 

↑ 
[79] (DSS), [39,97] (TNBS), [26,27] (H.h. 
Rag2-/-), [104] (C.r.) 

↑ 
[53,110] 

GSH content ↓ (transient)  
[111] (TNBS) 

↓ 
[113,114] 

Induction of GPx2 
expression 

↑ 
[117] (DSS), [117] (TNBS), [27] (H.h. Rag2-/-) 

↑ 
[114,117] 

Nitrotyrosine ↑ 
[86] (DSS), [39,97] (TNBS) 
[29] (H.h. Rag2-/-), [104] (C.r.) 

↑ 
[53,73,74,95,96] 
↑(in serum) [29] 

Chlorotyrosine ↑ 
[29] (H.h. Rag2-/-), [104] (C.r.) 

↑ (in serum) [29] 

Nitrosative DNA 
deamination 

dI ↑ 
[27] (H.h. Rag2-/-) 

n.a. 

Oxidative DNA damage ↑ 
[61,168,175] (DSS), [168] (Il10-/-); [167] 
(CD45RBhigh CD4+ T cellàSCID transfer 
model), [32] (Ikkβ(EE)IEC/Apc+/ΔIEC) 
↓ (transient) 
[27] (H.h. Rag2-/-) 

↑ 
[114,170] 

Lipid-peroxidation-
induced damage 

↑ 
[175] (DSS) 
↓ (transient) 
[27] (H.h. Rag2-/-) 

↑ 
[173,176-178] 
↓ (in PBMC from CRC patients) 
[181] 

Halogenation DNA 
damage 

↑ 
[27] (H.h. Rag2-/-) 

Detected [29] 

DSB and chromosomal 
rearrangements 

↑ 
[168,207] (DSS), [168,207] (Il10-/-), [57] 
(TNBS), [27] (H.h. Rag2-/-) 

↑ 
[208-212] 

n.c., no change; n.a., data not available, CRC, colorectal cancer; C.r., Citrobacter rodentium; H.h., 
Helicobacter hepaticus 
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FIGURE LEGENDS 

 

 

Figure 1. Colon histopathology in H. hepaticus infected Rag2-/- mice.  Photomicrographs of 

H&E-stained sections of ileocecocolic junction.  Representative sections from control (1 and 4) 

and H. hepaticus-infected (2-3 and 5-6) mice at 10 and 20 weeks post infection (wks pi).  Images 

2 and 5 show marked mucosal hyperplasia in infected mice at both time-points.  Images 3 and 6 

represent higher magnification photomicrographs to demonstrate the associated dysplasia and 

carcinoma development.  Reprinted from [27]; with permission of the PNAS. 
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in immunodeficient mice, such as those lacking the recombinase-activating gene-2 (Rag2), results 

in chronic colitis and colon cancer [35] (Figure 1).  H. hepaticus infection in Rag2-/- mice 

emulates many aspects of human IBD and as discussed here, this mouse model has proved to be a 

valuable tool specifically to study features of innate immunity during colitis-associated 

carcinogenesis. 

 

Figure 1. Colon histopathology in H. hepaticus infected Rag2-/- mice.  Photomicrographs of H&E-stained 

sections of ileocecocolic junction.  Representative sections from control (1 and 4) and H. hepaticus-infected (2-3 and 

5-6) mice at 10 and 20 weeks post infection (wks pi).  Images 2 and 5 show marked mucosal hyperplasia in infected 

mice at both time-points.  Images 3 and 6 represent higher magnification photomicrographs to demonstrate the 

associated dysplasia and carcinoma development.  Reprinted from [37]; with permission of the PNAS. 

2 Immunological chemistry of inflammatory bowel disease 

Colonic inflammation results in a local release of cytokines and other chemotactic factors 

that cause infiltration and activation of innate immune cells to produce large quantities of other 

cytokines and chemokines resulting in the activation of various enzymes that generate a wide 

spectrum of reactive chemical species (Figure 2).  In this section, we summarize evidence that 

these chemical mediators of inflammation can react with all types of macromolecules, including 
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Figure 2.  Chemical and biological mechanisms of inflammation [Illustration by Jeff Dixon].  

For details see text. iNOS, inducible nitric oxide synthase; MPO, myeloperoxidase; NOX, 

NADPH oxidase; XO, xanthine oxidase. 
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proteins, RNA, and DNA, to cause mutagenic and cytotoxic damage, thereby contributing to 

colon carcinogenesis. 

 

Figure 2.  Chemical and biological mechanisms of inflammation [Illustration by Jeff Dixon].  For details see 

text. iNOS, inducible nitric oxide synthase; MPO, myeloperoxidase; NOX, NADPH oxidase; XO, xanthine oxidase. 

2.1 Cell types involved in the generation of reactive chemical species during IBD 

In addition to the endogenous production of NO by colonic epithelial cells [42-45], two cell 

types of the innate immune system - macrophages and neutrophils - are thought to be responsible 

for the bulk of ROS and RNS generation during acute and chronic inflammation (Figure 2).  

Both cell types are closely related and cooperate during the onset, progression and resolution of 

inflammation.  Usually, tissue-resident macrophages and dendritic cells sense inflammatory 

stimuli, which causes chemokine-dependent recruitment of neutrophils followed by infiltration of 

blood monocytes, both of which then differentiate and become activated (reviewed in [15]). 
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Figure 3.  Computational modeling of colonic NO concentration. A. Schematic representation 

of colonic crypt anatomy. The inner lining of the colonic mucosa consists of three distinct layers: 

the muscularis mucosa, the lamina propria, and the epithelium.  B.  NO concentration as a 

function of height above crypt base taking into account NO synthesis by macrophages and 

epithelial cells.  The NO synthesis rate per unit volume in epithelial cells was assumed here to be 

5.6 µM/s, the same as the baseline rate for macrophages.  This is a conservative value; it is 

conceivable that rates in vivo are much higher.  Axial concentration variations are shown for 

radial positions r = 0, 18, 32 µm, which corresponds to the center of the luminal fluid, middle of 

the epithelium, and middle of the lamina propria region, respectively.  C.  Time-dependent NO 

concentration and cumulative NO dose experienced by an epithelial cell as it migrates from the 

crypt base to the mucosal surface.  The total time for migration was assumed to be 96 h.  The 

‘monolayer model’ assumes that the main source of NO is a confluent monolayer of macrophages 

localized in the region below the crypt base (see A.), whereas the ‘monolayer + distributed 

model’ assumes that macrophages are also distributed throughout the lamina propria. Reprinted 

from [72] (with permission of Elsevier). 
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obtained from recent cell culture studies and computational modeling.  NO concentrations have 

been measured in macrophage cultures with levels reaching up to 1 µM [79].  Moreover, by 

describing rates of reaction and diffusion in realistic geometries, mathematical modeling has 

estimated that maximal NO concentrations reached at the base of a crypt are in the sub-

micromolar range (~0.3 µM) and the cumulative NO dose an epithelial cell is experiencing 

during migration from the base to the top of the crypt is ~560 µM min [144] (Figure 3).  Taking 

into account findings that epithelial cells contribute to the NO production in the colon [42,97,98] 

and that macrophages are able to infiltrate into the lamina propria, these models predict maximal 

NO concentrations of ~ 0.4 µM and maximal cumulative doses of ~1 µM min [144] (Figure 3).  

A. B. C.

 

Figure 3.  Computational modeling of colonic NO concentration. A. Schematic representation of colonic crypt 

anatomy. The inner lining of the colonic mucosa consists of three distinct layers: the muscularis mucosa, the lamina 

propria, and the epithelium.  B.  NO concentration as a function of height above crypt base taking into account NO 

synthesis by macrophages and epithelial cells.  The NO synthesis rate per unit volume in epithelial cells was assumed 

here to be 5.6 µM/s, the same as the baseline rate for macrophages.  This is a conservative value; it is conceivable 

that rates in vivo are much higher.  Axial concentration variations are shown for radial positions r = 0, 18, 32 µm, 

which corresponds to the center of the luminal fluid, middle of the epithelium, and middle of the lamina propria 

region, respectively.  C.  Time-dependent NO concentration and cumulative NO dose experienced by an epithelial 

cell as it migrates from the crypt base to the mucosal surface.  The total time for migration was assumed to be 96 h.  

The ‘monolayer model’ assumes that the main source of NO is a confluent monolayer of macrophages localized in 

the region below the crypt base (see A.), whereas the ‘monolayer + distributed model’ assumes that macrophages are 

also distributed throughout the lamina propria. Reprinted from [144], [permission from Elsevier is currently being 

requested]. 

Application of precise and biologically relevant concentrations of NO and its derivatives is 

essential to mimic the biological environment and to study the physiological and cytotoxic 

functions of these chemical species.  In general, NO can be delivered to cells via three 
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Figure 4.  Examples of NO delivery systems for cell culture studies and cytotoxic profiles of 

different cell lines.  A.  Sin-1 is used as a chemical donor of NO and ONOO-.  B.  Delivery via 

NO and O2-permeable polydimethylsiloxande (Silastic) tubing enables controlled exposure of an 

adherent target cell line to NO/O2.  Shown is a schematic of a typical delivery apparatus.  C.  Co-

cultivation of a target cell line with activated macrophages.  D.  Cell viability in TK6 and NH32 

cells at 48 h and HCT116 cells at 24 h after exposure to NO and O2 or argon. Reprinted from 

[139] and [241] (with permissions of Elsevier and ACS). 
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approaches:  NO donor compounds, such as NONOates, NO gas, or NO produced by activated 

macrophages [145] (Figure 4 A-C).  All of those approaches have advantages and disadvantages.  

However, the most rigorous conditions are achieved by delivery systems specifically designed 

and optimized to provide controlled, steady state concentrations of NO, O2, and NO2, thereby 

mimicking the chemical environment thought to exist in inflamed tissues [146-150].  One such 

delivery system is based on the use of NO and O2-permeable polydimethylsiloxande (Silastic) 

tubing to deliver gases at constant and predictable rates [149] 

A.

B. C.

D.

Silastic tubing

 

Figure 4.  Examples of NO delivery systems for cell culture studies and cytotoxic profiles of different cell 

lines.  A.  Sin-1 is used as a chemical donor of NO and ONOO-.  B.  Delivery via NO and O2-permeable 

polydimethylsiloxande (Silastic) tubing enables controlled exposure of an adherent target cell line to NO/O2.  Shown 

is a schematic of a typical delivery apparatus.  Reprinted from [149] C.  Co-cultivation of a target cell line with 

activated macrophages.  Reprinted from [151] D.  Cell viability in TK6 and NH32 cells at 48 h and HCT116 cells at 

24 h after exposure to NO and O2 or argon. Reprinted from [149] [permissions for reprints are currently being 

requested]. 
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Figure 5. Overview of DNA damage products that are related to colitis-associated 

carcinogenesis.  For details see text. 
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ROS and RNS-mediated DNA damage products span a wide range of reactions, including 

nitrosation, nitration, oxidation, and halogenation reactions (Figure 5), which are discussed in the 

following with a special emphasis on studies analyzing murine and human colitis.  For a more 

general overview of the chemical biology of oxidative and nitrosative DNA damage the reader is 

referred to more specific reviews on this topic [157,158]. 
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Figure 5. Overview of DNA damage products that are related to colitis-associated carcinogenesis.  For 

details see text. 

3.3.1 Nitrosative deamination 

As mentioned above autooxidation of NO generates N2O3, which is thought to be the primary 

agent causing nitrosative deamination of DNA.  Other mechanisms from which deamination 
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Figure 6.  Overview of mechanisms that may contribute to tumor initiation and promotion 

during colitis-associated carcinogenesis. Modified from [27]; with permission of PNAS. 
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Figure 6.  Overview of mechanisms that may contribute to tumor initiation and promotion during colitis-

associated carcinogenesis. Modified from [37]; with permission of PNAS. 

Despite the large body of evidence linking colonic inflammation to DNA damage and 

carcinogenesis, many of the studies rely on correlative data, with few mechanistic studies that 

evaluate the functional relevance of inflammation-induced DNA damage.  In this respect, the 

question of the role of DNA modifications as cytotoxic products that drive replication-dependent 

mutagenesis or as directly mutagenic species in their own right remains to be answered.  

Moreover, the dynamics of genetic and epigenetic alterations and the role of repair pathways 

need to be defined in greater detail.  In many respects, the holes in our knowledge result from 

limitations of current methods to map and quantify DNA lesions.  That is, methods effective on a 

single cell level (e.g., antibodies) often lack chemical specificity, while methods of high chemical 

specificity (e.g., LC-MS/MS) are currently not sensitive enough to be used in single cell analyses.  

This motivates the development of methods capable of mapping sites of DNA damage genome-

wide, ideally in a real-time, dynamic manner.  Such methods could be employed to define the 

whole adductome of DNA lesions in a genome-wide manner and to determine the contribution of 

the individual types of damage to induce gene mutations in different types and stages of IBD.  In 

addition, further progress in defining the mechanistic link between IBD and cancer will be made 

by large-scale sequencing analysis of genetic and epigenetic changes occurring during 


