6 research outputs found

    Birth prevalence of isolated congenital limb reduction defects in Texas 1999–2001

    No full text
    Objective. Congenital limb defects are common birth defects occurring in approximately 2-7/10,000 live births. Because congenital limb defects are pervasive throughout all populations, and the conditions profoundly affect quality of life, they represent a significant public health concern. Currently there is a paucity of etiologic information in the literature regarding congenital limb reduction defects which represents a major limitation in developing treatment strategies as well as identifying high risk pregnancies. Additionally, despite the fact that the majority of congenital limb reduction defects are isolated, most previous studies have not separated them from those occurring as part of a known syndrome or with multiple additional congenital anomalies of unknown etiology. It stands to reason that factors responsible for multiple congenital anomalies that happen to include congenital limb reduction defects may be quite different from those factors leading to an isolated congenital limb reduction defect. As a first step toward gaining etiologic understanding, this cross-sectional study was undertaken to determine the birth prevalence and obtain demographic information about non-syndromic (isolated) congenital limb reduction defects that occurred in Texas from 1999-2001. Methods. The study population included all infants/fetuses with isolated congenital limb reduction defects born in Texas during 1999-2001; the comparison population was all infants who were born to mothers who were residents of Texas during the same period of time. The overall birth prevalence of limb reduction defects was determined and adjusted for ethnicity, gender, site of defect (upper limb versus lower limb), county of residence, maternal age and maternal education. Results. In Texas, the overall birth prevalence of isolated CLRDs was 2.1/10,000 live births (1.5 and 0.6/10,000 live births for upper limb and lower limb, respectively). The risk of isolated lower limb CLRDs in Texas was significantly lower in females when gender was examined individually (crude prevalence odds ratio of 0.57, 95% CI of 0.36-0.91) as well as in relation to all other variables used in the analysis (adjusted prevalence odds ratio of 0.58, 95% CI of 0.36-0.93). Harris County (which includes the Houston metropolitan area) had significantly lower risks of all (upper limb and lower limb combined) isolated CLRDs when examined in relation to other counties in Texas, with a crude prevalence odds ratio of 0.4 (95% CI: 0.29-0.72) and an adjusted prevalence odds ratio of 0.50 (95% CI: 0.31-0.80). The risk of isolated upper limb CLRDs was significantly lower in Harris County (crude prevalence odds ratio of 0.45, CI of 0.26-0.76 and adjusted prevalence odds ratio of 0.49, CI of 0.28-0.84). This trend toward decreased risk in Harris County was not observed for isolated lower limb reduction defects (adjusted prevalence odds ratio of 0.50, 95% confidence interval: 0.22-1.12). Conclusions. The birth prevalence of isolated congenital limb reduction defects in Texas is in the lower limits of the range of rates that have been reported by other authors for other states (Alabama, Arkansas, California, Georgia, Hawaii, Iowa, Maryland, Massachusetts, North Carolina, Oklahoma, Utah, Washington) and other countries (Argentina, Australia, Austria, Bolivia, Brazil, Canada, Chile, China, Colombia, Costa Rica, Croatia, Denmark, Ecuador, England, Finland, France, Germany, Hungary, Ireland, Israel, Italy, Lithuania, Mexico, Norway, Paraguay, Peru, Spain, Scotland, Sweden, Switzerland, Uruguay, and Venezuela). In Texas, the birth prevalence of isolated congenital lower limb reduction defects was greater for males than females, while the birth prevalence of isolated congenital upper limb reduction defects was not significantly different between males and females. The reduced rates of limb reduction defects in Harris County warrant further investigation. This study has provided an important first step toward gaining etiologic understanding in the study of isolated congenital limb reduction defects

    The Use of Whole Genome and Exome Sequencing for Newborn Screening: Challenges and Opportunities for Population Health.

    No full text
    Newborn screening (NBS) is a population-based program with a goal of reducing the burden of disease for conditions with significant clinical impact on neonates. Screening tests were originally developed and implemented one at a time, but newer methods have allowed the use of multiplex technologies to expand additions more rapidly to standard panels. Recent improvements in next-generation sequencing are also evolving rapidly from first focusing on individual genes, then panels, and finally all genes as encompassed by whole exome and genome sequencing. The intersection of these two technologies brings the revolutionary possibility of identifying all genetic disorders in newborns, allowing implementation of therapies at the optimum time regardless of symptoms. This article reviews the history of newborn screening and early studies examining the use of whole genome and exome sequencing as a screening tool. Lessons learned from these studies are discussed, along with technical, ethical, and societal challenges to broad implementation

    Severe hypoglycemia and diabetic ketoacidosis in adults with type 1 diabetes: results from the T1D Exchange clinic registry

    No full text
    corecore