683 research outputs found

    Comparison of Orbiter PRCS Plume Flow Fields Using CFD and Modified Source Flow Codes

    Get PDF
    The Space Shuttle Orbiter will use Reaction Control System (RCS) jets for docking with the planned International Space Station (ISS). During approach and backout maneuvers, plumes from these jets could cause high pressure, heating, and thermal loads on ISS components. The object of this paper is to present comparisons of RCS plume flow fields used to calculate these ISS environments. Because of the complexities of 3-D plumes with variable scarf-angle and multi-jet combinations, NASA/JSC developed a plume flow-field methodology for all of these Orbiter jets. The RCS Plume Model (RPM), which includes effects of scarfed nozzles and dual jets, was developed as a modified source-flow engineering tool to rapidly generate plume properties and impingement environments on ISS components. This paper presents flow-field properties from four PRCS jets: F3U low scarf-angle single jet, F3F high scarf-angle single jet, DTU zero scarf-angle dual jet, and F1F/F2F high scarf-angle dual jet. The RPM results compared well with plume flow fields using four CFD programs: General Aerodynamic Simulation Program (GASP), Cartesian (CART), Unified Solution Algorithm (USA), and Reacting and Multi-phase Program (RAMP). Good comparisons of predicted pressures are shown with STS 64 Shuttle Plume Impingement Flight Experiment (SPIFEX) data

    Variability of signal to noise ratio and the network analysis of gravitational wave burst signals

    Full text link
    The detection and estimation of gravitational wave burst signals, with {\em a priori} unknown polarization waveforms, requires the use of data from a network of detectors. For determining how the data from such a network should be combined, approaches based on the maximum likelihood principle have proven to be useful. The most straightforward among these uses the global maximum of the likelihood over the space of all waveforms as both the detection statistic and signal estimator. However, in the case of burst signals, a physically counterintuitive situation results: for two aligned detectors the statistic includes the cross-correlation of the detector outputs, as expected, but this term disappears even for an infinitesimal misalignment. This {\em two detector paradox} arises from the inclusion of improbable waveforms in the solution space of maximization. Such waveforms produce widely different responses in detectors that are closely aligned. We show that by penalizing waveforms that exhibit large signal-to-noise ratio (snr) variability, as the corresponding source is moved on the sky, a physically motivated restriction is obtained that (i) resolves the two detector paradox and (ii) leads to a better performing statistic than the global maximum of the likelihood. Waveforms with high snr variability turn out to be precisely the ones that are improbable in the sense mentioned above. The coherent network analysis method thus obtained can be applied to any network, irrespective of the number or the mutual alignment of detectors.Comment: 13 pages, 6 figure

    Heterogeneous Trimetallic Nanoparticles as Catalysts

    Get PDF
    The development and application of trimetallic nanoparticles continues to accelerate rapidly as a result of advances in materials design, synthetic control, and reaction characterization. Following the technological successes of multicomponent materials in automotive exhausts and photovoltaics, synergistic effects are now accessible through the careful preparation of multielement particles, presenting exciting opportunities in the field of catalysis. In this review, we explore the methods currently used in the design, synthesis, analysis, and application of trimetallic nanoparticles across both the experimental and computational realms and provide a critical perspective on the emergent field of trimetallic nanocatalysts. Trimetallic nanoparticles are typically supported on high-surface-area metal oxides for catalytic applications, synthesized via preparative conditions that are comparable to those applied for mono- and bimetallic nanoparticles. However, controlled elemental segregation and subsequent characterization remain challenging because of the heterogeneous nature of the systems. The multielement composition exhibits beneficial synergy for important oxidation, dehydrogenation, and hydrogenation reactions; in some cases, this is realized through higher selectivity, while activity improvements are also observed. However, challenges related to identifying and harnessing influential characteristics for maximum productivity remain. Computation provides support for the experimental endeavors, for example in electrocatalysis, and a clear need is identified for the marriage of simulation, with respect to both combinatorial element screening and optimal reaction design, to experiment in order to maximize productivity from this nascent field. Clear challenges remain with respect to identifying, making, and applying trimetallic catalysts efficiently, but the foundations are now visible, and the outlook is strong for this exciting chemical field

    On Population Growth Near Protected Areas

    Get PDF
    Background: Protected areas are the first, and often only, line of defense in efforts to conserve biodiversity. They might be detrimental or beneficial to rural communities depending on how they alter economic opportunities and access to natural resources. As such, protected areas may attract or repel human settlement. Disproportionate increases in population growth near protected area boundaries may threaten their ability to conserve biodiversity. Methodology/Principal Findings: Using decadal population datasets, we analyze population growth across 45 countries and 304 protected areas. We find no evidence for population growth near protected areas to be greater than growth of rural areas in the same country. Furthermore, we argue that what growth does occur near protected areas likely results from a general expansion of nearby population centers. Conclusions/Significance: Our results contradict those from a recent study by Wittemyer et al., who claim overwhelming evidence for increased human population growth near protected areas. To understand the disagreement, we re-analyzed the protected areas in Wittemyer et al.’s paper. Their results are simply artifacts of mixing two incompatible datasets. Protected areas may experience unusual population pressures near their edges; indeed, individual case studies provid

    Marine Macroalgal Diversity Assessment of Saba Bank, Netherlands Antilles

    Get PDF
    Background: Located in the Dutch Windward Islands, Saba Bank is a flat-topped seamount (20–45 m deep in the shallower regions). The primary goals of the survey were to improve knowledge of biodiversity for one of the world’s most significant, but little-known, seamounts and to increase basic data and analyses to promote the development of an improved management plan. Methodology/Principal Findings: Our team of three divers used scuba to collect algal samples to depths of 50 m at 17 dive sites. Over 360 macrophyte specimens (12 putative new species) were collected, more than 1,000 photographs were taken in truly exceptional habitats, and three astonishing new seaweed community types were discovered. These included: (1) ‘‘Field of Greens’ ’ (N 17u30.6209, W63u27.7079) dominated by green seaweeds as well as some filamentous reds, (2) ‘‘Brown Town’ ’ (N 17u28.0279, W63u14.9449) dominated by large brown algae, and (3) ‘‘Seaweed City’ ’ (N 17u26.4859, W63u16.8509) with a diversity of spectacular fleshy red algae. Conclusions/Significance: Dives to 30 m in the more two-dimensional interior habitats revealed particularly robust specimens of algae typical of shallower seagrass beds, but here in the total absence of any seagrasses (seagrasses generally do not grow below 20 m). Our preliminary estimate of the number of total seaweed species on Saba Bank ranges from a minimum of 150 to 200. Few filamentous and thin sheet forms indicative of stressed or physically disturbed environments were observed. A more precise number still awaits further microscopic and molecular examinations in the laboratory. The expedition, while intensive, has only scratched the surface of this unique submerged seamount/atoll

    A synthesis approach of mouse studies to identify genes and proteins in arterial thrombosis and bleeding.

    Get PDF
    Antithrombotic therapies reduce cardiovascular diseases by preventing arterial thrombosis and thromboembolism, but at expense of increased bleeding risks. Arterial thrombosis studies using genetically modified mice have been invaluable for identification of new molecular targets. Because of low sample sizes and heterogeneity in approaches or methodologies, a formal meta-analysis to compare studies of mice with single-gene defects encountered major limitations. To overcome these, we developed a novel synthesis approach to quantitatively scale 1514 published studies of arterial thrombus formation (in vivo and in vitro), thromboembolism, and tail-bleeding of genetically modified mice. Using a newly defined consistency parameter (CP), indicating the strength of published data, comparisons were made of 431 mouse genes, of which 17 consistently contributed to thrombus formation without affecting hemostasis. Ranking analysis indicated high correlations between collagen-dependent thrombosis models in vivo (FeCl3 injury or ligation/compression) and in vitro. Integration of scores and CP values resulted in a network of protein interactions in thrombosis and hemostasis (PITH), which was combined with databases of genetically linked human bleeding and thrombotic disorders. The network contained 2946 nodes linked to modifying genes of thrombus formation, mostly with expression in megakaryocytes. Reactome pathway analysis and network characteristics revealed multiple novel genes with potential contribution to thrombosis/hemostasis. Studies with additional knockout mice revealed that 4 of 8 (Apoe, Fpr2, Ifnar1, Vps13a) new genes were modifying in thrombus formation. The PITH network further: (i) revealed a high similarity of murine and human hemostatic and thrombotic processes and (ii) identified multiple new candidate proteins regulating these processes

    Thomas Graham Brown (1882–1965): Behind the Scenes at the Cardiff Institute of Physiology

    Get PDF
    Thomas Graham Brown undertook seminal experiments on the neural control of locomotion between 1910 and 1915. Although elected to the Royal Society in 1927, his locomotion research was largely ignored until the 1960s when it was championed and extended by the distinguished neuroscientist, Anders Lundberg. Puzzlingly, Graham Brown's published research stopped in the 1920s and he became renowned as a mountaineer. In this article, we review his life and multifaceted career, including his active neurological service in WWI. We outline events behind the scenes during his tenure at Cardiff's Institute of Physiology in Wales, UK, including an interview with his technician, Terrence J. Surman, who worked in this institute for over half a century

    The Lagoon at Caroline/Millennium Atoll, Republic of Kiribati: Natural History of a Nearly Pristine Ecosystem

    Get PDF
    A series of surveys were carried out to characterize the physical and biological parameters of the Millennium Atoll lagoon during a research expedition in April of 2009. Millennium is a remote coral atoll in the Central Pacific belonging to the Republic of Kiribati, and a member of the Southern Line Islands chain. The atoll is among the few remaining coral reef ecosystems that are relatively pristine. The lagoon is highly enclosed, and was characterized by reticulate patch and line reefs throughout the center of the lagoon as well as perimeter reefs around the rim of the atoll. The depth reached a maximum of 33.3 m in the central region of the lagoon, and averaged between 8.8 and 13.7 m in most of the pools. The deepest areas were found to harbor large platforms of Favia matthaii, which presumably provided a base upon which the dominant corals (Acropora spp.) grew to form the reticulate reef structure. The benthic algal communities consisted mainly of crustose coralline algae (CCA), microfilamentous turf algae and isolated patches of Halimeda spp. and Caulerpa spp. Fish species richness in the lagoon was half of that observed on the adjacent fore reef. The lagoon is likely an important nursery habitat for a number of important fisheries species including the blacktip reef shark and Napoleon wrasse, which are heavily exploited elsewhere around the world but were common in the lagoon at Millennium. The lagoon also supports an abundance of giant clams (Tridacna maxima). Millennium lagoon provides an excellent reference of a relatively undisturbed coral atoll. As with most coral reefs around the world, the lagoon communities of Millennium may be threatened by climate change and associated warming, acidification and sea level rise, as well as sporadic local resource exploitation which is difficult to monitor and enforce because of the atoll's remote location. While the remote nature of Millennium has allowed it to remain one of the few nearly pristine coral reef ecosystems in the world, it is imperative that this ecosystem receives protection so that it may survive for future generations
    corecore