13 research outputs found
Ferrocene conjugates of dUTP for enzymatic redox labelling of DNA
Two ferrocene-labelled analogues of dTTP, 5-(3-ferrocenecarboxamidopropenyl-1) 2'-deoxyuridine 5'-triphosphate (Fc1-dUTP) and 5-(3-ferroceneacet-amidopropenyl-1) 2'-deoxyuridine 5'-triphosphate (Fc2-dUTP) have been produced to demonstrate the incorporation of redox labels into DNA by polymerases. Cyclic voltammetry indicates that the ferrocenyl moieties display reversible redox behaviour in aqueous buffer with E1/2 values of 398 (Fc1-dUTP) and 260 mV (Fc2-dUTP) versus Ag/AgCl. Primer extension by the proofreading enzymes Klenow fragment and T4 DNA polymerase shows that Fc1-dUTP is efficiently incorporated into DNA during synthesis, including incorporation of two successive modified nucleotides. Production of a 998 bp amplicon by Tth DNA polymerase demonstrates that Fc1-dUTP is also a satisfactory substrate for PCR. Despite its structural similarity, Fc2-dUTP acts predominantly as a terminator with the polymerases employed here. UV melting analysis of a 37mer duplex containing five Fc1-dU residues reveals that the labelled nucleotide introduces only a modest helix destabilisation, with Tm = 71 versus 75°C for the corresponding natural construct. Modified DNA is detected at femtomole levels using a HPLC system with a coulometric detector. The availability of simple and effective enzymatic labelling strategies should promote the further development of electrochemical detection in nucleic acid analysis.</p
Multipotential electrochemical detection of primer extension reactions on DNA self-assembled monolayers
Electroactive nucleoside triphosphates ("electrotides") have been incorporated into primers by DNA polymerase and detected on oligonucleotide surface-assembled monolayers. Four electrotides bearing three different electroactive moieties-ferrocene, vinylferrocene, and anthraquinone are detected in four alternative formats.</p
Practical synthesis of sugar monophosphonucleotides
A reliable procedure for the preparation of sugar nucleoside monophosphates is presented, which involves condensation of an activated glycosyl-1-H-phosphonate with an appropriately protected nucleoside and simple end-product isolation via lithium perchlorate-induced precipitation. The utility of these methods is demonstrated by the preparation of a number of purine- and pyrimidine-based sugar nucleoside monophosphate derivatives