1,097 research outputs found
A formal method for identifying distinct states of variability in time-varying sources: SgrA* as an example
Continuously time variable sources are often characterized by their power
spectral density and flux distribution. These quantities can undergo dramatic
changes over time if the underlying physical processes change. However, some
changes can be subtle and not distinguishable using standard statistical
approaches. Here, we report a methodology that aims to identify distinct but
similar states of time variability. We apply this method to the Galactic
supermassive black hole, where 2.2 um flux is observed from a source associated
with SgrA*, and where two distinct states have recently been suggested. Our
approach is taken from mathematical finance and works with conditional flux
density distributions that depend on the previous flux value. The discrete,
unobserved (hidden) state variable is modeled as a stochastic process and the
transition probabilities are inferred from the flux density time series. Using
the most comprehensive data set to date, in which all Keck and a majority of
the publicly available VLT data have been merged, we show that SgrA* is
sufficiently described by a single intrinsic state. However the observed flux
densities exhibit two states: a noise-dominated and a source-dominated one. Our
methodology reported here will prove extremely useful to assess the effects of
the putative gas cloud G2 that is on its way toward the black hole and might
create a new state of variability.Comment: Submitted to ApJ; 33 pages, 4 figures; comments welcom
High-frequency VLBI observations of SgrA* during a multi-frequency campaign in May 2007
In May 2007 the compact radio source Sgr A* was observed in a global
multi-frequency monitoring campaign, from radio to X-ray bands. Here we present
and discuss first and preliminary results from polarization sensitive VLBA
observations, which took place during May 14-25, 2007. Here, Sgr A* was
observed in dual polarization on 10 consecutive days at 22, 43, and 86 GHz. We
describe the VLBI experiments, our data analysis, monitoring program and show
preliminary images obtained at the various frequencies. We discuss the data
with special regard also to the short term variability.Comment: 6 pages, 5 figures;necessary style files included; contribution for
the conference "The Universe under the Microscope" (AHAR 2008), held in Bad
Honnef (Germany) in April 2008, to be published in Journal of Physics:
Conference Series by Institute of Physics Publishing, R. Schoedel, A. Eckart,
S. Pfalzner, and E. Ros (eds.
B-Meson Distribution Amplitudes of Geometric Twist vs. Dynamical Twist
Two- and three-particle distribution amplitudes of heavy pseudoscalar mesons
of well-defined geometric twist are introduced. They are obtained from
appropriately parametrized vacuum-to-meson matrix elements by applying those
twist projectors which determine the enclosed light-cone operators of definite
geometric twist and, in addition, observing the heavy quark constraint.
Comparing these distribution amplitudes with the conventional ones of dynamical
twist we derive relations between them, partially being of Wandzura-Wilczek
type; also sum rules of Burkhardt-Cottingham type are derived.The derivation is
performed for the (double) Mellin moments and then re-summed to the non-local
distribution amplitudes. Furthermore, a parametrization of vacuum-to-meson
matrix elements for non-local operators off the light-cone in terms of
distribution amplitudes accompanying independent kinematical structures is
derived.Comment: 18 pages, Latex 2e, no figure
Quantum theory for electron spin decoherence induced by nuclear spin dynamics in semiconductor quantum computer architectures: Spectral diffusion of localized electron spins in the nuclear solid-state environment
We consider the decoherence of a single localized electron spin due to its
coupling to the lattice nuclear spin bath in a semiconductor quantum computer
architecture. In the presence of an external magnetic field and at low
temperatures, the dominant decoherence mechanism is the spectral diffusion of
the electron spin resonance frequency due to the temporally fluctuating random
magnetic field associated with the dipolar interaction induced flip-flops of
nuclear spin pairs. The electron spin dephasing due to this random magnetic
field depends intricately on the quantum dynamics of the nuclear spin bath,
making the coupled decoherence problem difficult to solve. We provide a
formally exact solution of this non-Markovian quantum decoherence problem which
numerically calculates accurate spin decoherence at short times, which is of
particular relevance in solid-state spin quantum computer architectures. A
quantum cluster expansion method is developed, motivated, and tested for the
problem of localized electron spin decoherence due to dipolar fluctuations of
lattice nuclear spins. The method is presented with enough generality for
possible application to other types of spin decoherence problems. We present
numerical results which are in quantitative agreement with electron spin echo
measurements in phosphorus doped silicon. We also present spin echo decay
results for quantum dots in GaAs which differ qualitatively from that of the
phosphorus doped silicon system. Our theoretical results provide the ultimate
limit on the spin coherence (at least, as characterized by Hahn spin echo
measurements) of localized electrons in semiconductors in the low temperature
and the moderate to high magnetic field regime of interest in scalable
semiconductor quantum computer architectures.Comment: 23 pages, 15 figure
Observations of Intrahour Variable Quasars: Scattering in our Galactic Neighbourhood
Interstellar scintillation (ISS) has been established as the cause of the
random variations seen at centimetre wavelengths in many compact radio sources
on timescales of a day or less. Observations of ISS can be used to probe
structure both in the ionized insterstellar medium of the Galaxy, and in the
extragalactic sources themselves, down to microarcsecond scales. A few quasars
have been found to show large amplitude scintillations on unusually rapid,
intrahour timescales. This has been shown to be due to weak scattering in very
local Galactic ``screens'', within a few tens of parsec of the Sun. The short
variability timescales allow detailed study of the scintillation properties in
relatively short observing periods with compact interferometric arrays. The
three best-studied ``intrahour variable'' quasars, PKS 0405-385, J1819+3845 and
PKS 1257-326, have been instrumental in establishing ISS as the principal cause
of intraday variability at centimetre wavelengths. Here we review the relevant
results from observations of these three sources.Comment: 10 pages, 4 figures, to appear in Astronomical and Astrophysical
Transaction
High Order Coherent Control Sequences of Finite-Width Pulses
The performance of sequences of designed pulses of finite length is
analyzed for a bath of spins and it is compared with that of sequences of
ideal, instantaneous pulses. The degree of the design of the pulse strongly
affects the performance of the sequences. Non-equidistant, adapted sequences of
pulses, which equal instantaneous ones up to , outperform
equidistant or concatenated sequences. Moreover, they do so at low energy cost
which grows only logarithmically with the number of pulses, in contrast to
standard pulses with linear growth.Comment: 6 pages, 5 figures, new figures, published versio
Spitzer/IRAC Observations of the Variability of Sgr A* and the Object G2 at 4.5 microns
We present the first detection from the Spitzer Space Telescope of 4.5 micron
variability from Sgr A*, the emitting source associated with the Milky Way's
central black hole. The >23 hour continuous light curve was obtained with the
IRAC instrument in 2013 December. The result characterizes the variability of
Sgr A* prior to the closest approach of the G2 object, a putative infalling gas
cloud that orbits close to Sgr A*. The high stellar density at the location of
Sgr A* produces a background of ~250 mJy at 4.5 microns in each pixel with a
large pixel-to-pixel gradient, but the light curve for the highly variable Sgr
A* source was successfully measured by modeling and removing the variations due
to pointing wobble. The observed flux densities range from the noise level of
~0.7 mJy rms in a 6.4-s measurement to ~10 mJy. Emission was seen above the
noise level ~34% of the time. The light curve characteristics, including the
flux density distribution and structure function, are consistent with those
previously derived at shorter infrared wavelengths. We see no evidence in the
light curve for activity attributable to the G2 interaction at the observing
epoch, ~100 days before the expected G2 periapsis passage. The IRAC light curve
is more than a factor of two longer than any previous infrared observation,
improving constraints on the timescale of the break in the power spectral
distribution of Sgr A* flux densities. The data favor the longer of the two
previously published values for the timescale.Comment: 13 pages, 10 figures, 2 tables, accepted for publication in the Ap
Improving Orbit Estimates for Incomplete Orbits with a New Approach to Priors -- with Applications from Black Holes to Planets
We propose a new approach to Bayesian prior probability distributions
(priors) that can improve orbital solutions for low-phase-coverage orbits,
where data cover less than approximately 40% of an orbit. In instances of low
phase coverage such as with stellar orbits in the Galactic center or with
directly-imaged exoplanets, data have low constraining power and thus priors
can bias parameter estimates and produce under-estimated confidence intervals.
Uniform priors, which are commonly assumed in orbit fitting, are notorious for
this. We propose a new observable-based prior paradigm that is based on
uniformity in observables. We compare performance of this observable-based
prior and of commonly assumed uniform priors using Galactic center and
directly-imaged exoplanet (HR 8799) data. The observable-based prior can reduce
biases in model parameters by a factor of two and helps avoid under-estimation
of confidence intervals for simulations with less than about 40% phase
coverage. Above this threshold, orbital solutions for objects with sufficient
phase coverage such as S0-2, a short-period star at the Galactic center with
full phase coverage, are consistent with previously published results. Below
this threshold, the observable-based prior limits prior influence in regions of
prior dominance and increases data influence. Using the observable-based prior,
HR 8799 orbital analyses favor lower eccentricity orbits and provide stronger
evidence that the four planets have a consistent inclination around 30 degrees
to within 1-sigma. This analysis also allows for the possibility of
coplanarity. We present metrics to quantify improvements in orbital estimates
with different priors so that observable-based prior frameworks can be tested
and implemented for other low-phase-coverage orbits.Comment: Published in AJ. 23 pages, 14 figures. Monte Carlo chains are
available in the published article, or are available upon reques
- …