71 research outputs found

    Barrel swirl breakdown in spark-ignition engines: Insights from particle image velocimetry measurements

    Get PDF
    This is an article from the journal, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering [© IMechE ]. It is also available at: http://dx.doi.org/10.1243/0954407991527134Particle image velocimetry (PIV) has been used here to study the formation and breakdown of barrel swirl ('tumble') in a production geometry, four-stroke, four-valve, motored, spark-ignition, optically accessed internal combustion (IC) engine. The barrel swirl ratio (BSR) of the cylinder head could be enhanced by means of a port face inducer gasket so that the flow processes taking place at low and high swirl ratios could be investigated conveniently. Double-exposed images from planes both parallel and perpendicular to the cylinder axis were recorded at selected crank angles through the induction and compression strokes at a motored engine speed of 1000 r/min, with a wide open throttle, for both high and low BSR cases. The recorded images were interrogated by digital autocorrelation to give two-dimensional maps of instantaneous velocity. In both high and low BSR cases, a barrel or tumbling vortex motion is generated during induction, which is shown to persist throughout the majority of the compression stroke. The details of barrel swirl formation during induction and its subsequent modification during compression, however, differ strongly between the two cases. These differences can be explained qualitatively in terms of two main events; the first being competition during induction between vortices of unequal strength and the second being competition between the large-scale swirl motion and the local flow field generated by piston motion during compression. In the low barrel swirl case, significant dissipation occurs owing to these interactions and consequently the large-scale motion exhibits lower mean velocities and undergoes significant distortion. In the case of high BSR, the competition effects are minimized and a single ordered vertical vortex exhibiting high velocity magnitudes is observed to avoid piston induced distortion. It then moves into the apex of the pent roof combustion chamber where it survives as a single ordered vortex until at least 40° crank angle (CA) before top dead centre (TDC). Limitations and developments of the PIV technique are discussed

    Overview of the ID, EPI and REL tasks of BioNLP Shared Task 2011

    Get PDF
    We present the preparation, resources, results and analysis of three tasks of the BioNLP Shared Task 2011: the main tasks on Infectious Diseases (ID) and Epigenetics and Post-translational Modifications (EPI), and the supporting task on Entity Relations (REL). The two main tasks represent extensions of the event extraction model introduced in the BioNLP Shared Task 2009 (ST'09) to two new areas of biomedical scientific literature, each motivated by the needs of specific biocuration tasks. The ID task concerns the molecular mechanisms of infection, virulence and resistance, focusing in particular on the functions of a class of signaling systems that are ubiquitous in bacteria. The EPI task is dedicated to the extraction of statements regarding chemical modifications of DNA and proteins, with particular emphasis on changes relating to the epigenetic control of gene expression. By contrast to these two application-oriented main tasks, the REL task seeks to support extraction in general by separating challenges relating to part-of relations into a subproblem that can be addressed by independent systems. Seven groups participated in each of the two main tasks and four groups in the supporting task. The participating systems indicated advances in the capability of event extraction methods and demonstrated generalization in many aspects: from abstracts to full texts, from previously considered subdomains to new ones, and from the ST'09 extraction targets to other entities and events. The highest performance achieved in the supporting task REL, 58% F-score, is broadly comparable with levels reported for other relation extraction tasks. For the ID task, the highest-performing system achieved 56% F-score, comparable to the state-of-the-art performance at the established ST'09 task. In the EPI task, the best result was 53% F-score for the full set of extraction targets and 69% F-score for a reduced set of core extraction targets, approaching a level of performance sufficient for user-facing applications. In this study, we extend on previously reported results and perform further analyses of the outputs of the participating systems. We place specific emphasis on aspects of system performance relating to real-world applicability, considering alternate evaluation metrics and performing additional manual analysis of system outputs. We further demonstrate that the strengths of extraction systems can be combined to improve on the performance achieved by any system in isolation. The manually annotated corpora, supporting resources, and evaluation tools for all tasks are available from http://www.bionlp-st.org and the tasks continue as open challenges for all interested parties

    Introducing Protein Intrinsic Disorder.

    Get PDF

    Introducing Protein Intrinsic Disorder

    Full text link
    corecore