236 research outputs found

    My journey in academia: Things not on the CV

    Get PDF
    I am a professor at Chalmers University of Technology in Sweden. I trained in chemistry in Sweden but went to the USA for my postdoc. I remained there for 12 years, being faculty at two American universities, before I returned to Sweden for a professorship in the northern city of Ume\ue5. More recently, I returned to my alma mater Chalmers University of Technology in Gothenburg, where I have taken on senior leadership roles. On paper, my career trajectory looks straightforward, but there are many detrimental aspects and lucky coincidences that are not listed on my CV. Life in academia is never easy, and one is never \u27done\u27. But working in academia is wonderful, as it provides so much freedom and creativity, including being very accommodating towards having kids. Here, I will describe my own personal journey, with the hope of inspiring young women to follow their own path in academia. Yes, there is still bias against women in academia, but change is happening, and the many benefits of being an academic beat such drawbacks

    Gut power: Modulation of human amyloid formation by amyloidogenic proteins in the gastrointestinal tract

    Get PDF
    Protein assembly into amyloid fibers underlies many neurodegenerative disorders. In Parkinson\u27s disease, amyloid formation of α-synuclein is linked to brain cell death. The gut–brain axis plays a key role in Parkinson\u27s disease, and initial α-synuclein amyloid formation may occur distant from the brain. Because different amyloidogenic proteins can cross-seed, and α-synuclein is expressed outside the brain, amyloids present in the gut (from food products and secreted by microbiota) may modulate α-synuclein amyloid formation via direct interactions. I here describe existing such data that only began to appear in the literature in the last few years. The striking, but limited, data set—spanning from acceleration to inhibition—calls for additional investigations that may unravel disease mechanisms as well as new treatments

    Crossroads between copper ions and amyloid formation in Parkinson\u27s disease

    Get PDF
    Copper (Cu) ion dys-homeostasis and α-synclein amyloid deposits are two hallmarks of Parkinson\u27s disease (PD). Here, I will discuss the connections between these features, with a major focus on the role of Cu in the α-synuclein (aS) amyloid formation process. The structurally disordered aS monomer can bind to both redox states of Cu (i.e., oxidized Cu(II) and reduced Cu(I)) with high affinity in vitro. Notably, the presence of Cu(II) (in absence of aS N-terminal acetylation) and Cu(I) (when in complex with the copper chaperone Atox1) modulate aS assembly into β-structured amyloids in opposite directions in vitro. Albeit the link to biological relevance is not fully unraveled, existing observations clearly emphasize the need for more knowledge on this interplay and its consequences to eventually combat destructive reactions that promote PD

    Atp7a-regulated enzyme metalation and trafficking in the menkes disease puzzle

    Get PDF
    Copper is vital for numerous cellular functions affecting all tissues and organ systems in the body. The copper pump, ATP7A is critical for whole-body, cellular, and subcellular copper homeostasis, and dysfunction due to genetic defects results in Menkes disease. ATP7A dysfunction leads to copper deficiency in nervous tissue, liver, and blood but accumulation in other tissues. Site-specific cellular deficiencies of copper lead to loss of function of copper-dependent enzymes in all tissues, and the range of Menkes disease pathologies observed can now be explained in full by lack of specific copper enzymes. New pathways involving copper activated lysosomal and steroid sulfatases link patient symptoms usually related to other inborn errors of metabolism to Menkes disease. Additionally, new roles for lysyl oxidase in activation of molecules necessary for the innate immune system, and novel adapter molecules that play roles in ERGIC trafficking of brain receptors and other proteins, are emerging. We here summarize the current knowledge of the roles of copper enzyme function in Menkes disease, with a focus on ATP7A-mediated enzyme metalation in the secretory pathway. By establishing mechanistic relationships between copper-dependent cellular processes and Menkes disease symptoms in patients will not only increase understanding of copper biology but will also allow for the identification of an expanding range of copper-dependent enzymes and pathways. This will raise awareness of rare patient symptoms, and thus aid in early diagnosis of Menkes disease patients

    Amyloid Fibers of α-Synuclein Catalyze Chemical Reactions

    Get PDF
    Amyloid fibers of the protein α-synuclein, found in Lewy body deposits, are hallmarks of Parkinson’s disease. We here show that α-synuclein amyloids catalyze biologically relevant chemical reactions in vitro. Amyloid fibers, but not monomers, of α-synuclein catalyzed hydrolysis of the model ester para-nitrophenyl acetate and dephosphorylation of the model phosphoester para-nitrophenyl-orthophosphate. When His50 was replaced with Ala in α-synuclein, dephosphorylation but not esterase activity of amyloids was diminished. Truncation of the protein’s C-terminus had no effect on fiber catalytic efficiency. Catalytic activity of α-synuclein fibers may be a new gain-of-function that plays a role in Parkinson’s disease

    Copper chaperone Atox1 plays role in breast cancer cell migration

    Get PDF
    Copper (Cu) is an essential transition metal ion required as cofactor in many key enzymes. After cell uptake of Cu, the metal is transported by the cytoplasmic Cu chaperone Atox1 to P1B-type ATPases in the Golgi network for incorporation into Cu-dependent enzymes in the secretory path. Cu is vital for many steps of cancer progression and Atox1 was recently suggested to have additional functionality as a nuclear transcription factor. We here investigated the expression level, cellular localization and role in cell migration of Atox1 in an aggressive breast cancer cell line upon combining immunostaining, microscopy and a wound healing assay. We made the unexpected discovery that Atox1 accumulates at lamellipodia borders of migrating cancer cells and Atox1 silencing resulted in migration defects as evidenced from reduced wound closure. Therefore, we have discovered an unknown role of the Cu chaperone Atox1 in breast cancer cell migration

    Copper relay path through the N-terminus of Wilson disease protein, ATP7B

    Get PDF
    In human cells, copper (Cu) ions are transported by the cytoplasmic Cu chaperone Atox1 to the Wilson disease protein (ATP7B) in the Golgi for loading of Cu-dependent enzymes. ATP7B is a membrane-spanning protein which, in contrast to non-mammalian homologs, has six cytoplasmic metal-binding domains (MBDs). To address the reason for multiple MBDs, we introduced strategic mutations in which one, two or three MBDs had been blocked for Cu binding via cysteine-to-serine mutations (but all six MBDs are present in all) in a yeast system that probes Cu flow through Atox1 and ATP7B. The results, combined with earlier work, support a mechanistic model in which MBD1-3 forms a regulatory unit of ATP7B Cu transport. Cu delivery via Atox1 to this unit, followed by loading of Cu in MBD3, promotes release of inhibitory interactions. Whereas the Cu site in MBD4 can be mutated without a large effect, an intact Cu site in either MBD5 or MBD6 is required for Cu transport. All MBDs, expressed as single-domain proteins, can replace Atox1 and deliver Cu to full-length ATP7B. However, only MBD6 can deliver Cu to truncated ATP7B where all six MBDs are removed, suggesting a docking role for this structural uni

    Single-cell tracking demonstrates copper chaperone Atox1 to be required for breast cancer cell migration

    Get PDF
    Copper ions are needed for several hallmarks of cancer. However, the involved pathways, mechanisms, and copper-binding proteins are mostly unknown. We recently found that cytoplasmic Antioxidant 1 copper chaperone (Atox1), which is up-regulated in breast cancer, is localized at the lamellipodia edges of aggressive breast cancer cells. To reveal molecular insights into a putative role in cell migration, we here investigated breast cancer cell (MDA-MB-231) migration by video microscopy as a function of Atox1. Tracking of hundreds of individual cells (per condition) over a 9-h time series revealed that cell migration velocity and directionality are significantly reduced upon Atox1 silencing in the cells. Because silencing of the copper transporter ATP7A also reduced cell migration, these proteins appear to be on the same pathway, suggesting that their well-known copper transport activity is involved. In-cell proximity ligation assays demonstrated that Atox1, ATP7A, and the proenzyme of lysyl oxidase (LOX; copper-loaded via ATP7A) are all in close proximity and that LOX activity is reduced upon Atox1 silencing in the cells. Since LOX is an established player in cancer cell migration, our results imply that Atox1 mediates breast cancer cell migration via coordinated copper transport in the ATP7A-LOX axis. Because individual cell migration is an early step in breast cancer metastasis, Atox1 levels in tumor cells may be a predictive measure of metastasis potential and serve as a biomarker for copper depletion therapy

    Response to crowded conditions reveals compact nucleus for amyloid formation of folded protein

    Get PDF
    Although the consequences of the crowded cell environments may affect protein folding, function and misfolding reactions, these processes are often studied in dilute solutions in vitro. We here used biophysical experiments to investigate the amyloid fibril formation process of the fish protein apo-β-parvalbumin in solvent conditions that mimic steric and solvation aspects of the in vivo milieu. Apo-β-parvalbumin is a folded protein that readily adopts an amyloid state via a nucleation-elongation mechanism. Aggregation experiments in the presence of macromolecular crowding agents (probing excluded volume, entropic effects) as well as small molecule osmolytes (probing solvation, enthalpic effects) revealed that both types of agents accelerate overall amyloid formation, but the elongation step was faster with macromolecular crowding agents but slower in the presence of osmolytes. The observations can be explained by the steric effects of excluded volume favoring assembled states and that amyloid nucleation does not involve monomer unfolding. In contrast, the solvation effects due to osmolyte presence promote nucleation but not elongation. Therefore, the amyloid-competent nuclei must be compact with less osmolytes excluded from the surface than either the folded monomers or amyloid fibers. We conclude that, in contrast to other amyloidogenic folded proteins, amyloid formation of apo-β-parvalbumin is accelerated by crowded cell-like conditions due to a nucleation process that does not involve large-scale protein unfolding

    Crosstalk Between Alpha-Synuclein and Other Human and Non-Human Amyloidogenic Proteins: Consequences for Amyloid Formation in Parkinson\u27s Disease

    Get PDF
    It was recently shown (Sampson et al., Elife9, 2020) that an amyloidogenic protein, CsgA, present in E. coli biofilms in the gut can trigger Parkinson\u27s disease in mice. This study emphasizes the possible role of the gut microbiome in modulation (and even initiation) of human neurodegenerative disorders, such as Parkinson\u27s disease. As the CsgA protein was found to accelerate alpha-synuclein (the key amyloidogenic protein in Parkinson\u27s disease) amyloid formation in vitro, this result suggests that also other amyloidogenic proteins from gut bacteria, and even from the diet (such as stable allergenic proteins), may be able to affect human protein conformations and thereby modulate amyloid-related diseases. In this review, we summarize what has been reported in terms of in vitro cross-reactivity studies between alpha-synuclein and other amyloidogenic human and non-human proteins. It becomes clear from the limited data that exist that there is a fine line between acceleration and inhibition, but that cross-reactivity is widespread, and it is more common for other proteins (among the studied cases) to accelerate alpha-synuclein amyloid formation than to block it. It is of high importance to expand investigations of cross-reactivity between amyloidogenic proteins to both reveal underlying mechanisms and links between human diseases, as well as to develop new treatments that may be based on an altered gut microbiome
    • …
    corecore