3,678 research outputs found

    Distance dependence of angular correlations in dense polymer solutions

    Full text link
    Angular correlations in dense solutions and melts of flexible polymer chains are investigated with respect to the distance rr between the bonds by comparing quantitative predictions of perturbation calculations with numerical data obtained by Monte Carlo simulation of the bond-fluctuation model. We consider both monodisperse systems and grand-canonical (Flory-distributed) equilibrium polymers. Density effects are discussed as well as finite chain length corrections. The intrachain bond-bond correlation function P(r)P(r) is shown to decay as P(r)∼1/r3P(r) \sim 1/r^3 for \xi \ll r \ll \r^* with ξ\xi being the screening length of the density fluctuations and r∗∼N1/3r^* \sim N^{1/3} a novel length scale increasing slowly with (mean) chain length NN.Comment: 17 pages, 5 figures, accepted for publication at Macromolecule

    Shear stress relaxation and ensemble transformation of shear stress autocorrelation functions revisited

    Full text link
    We revisit the relation between the shear stress relaxation modulus G(t)G(t), computed at finite shear strain 0<γ≪10 < \gamma \ll 1, and the shear stress autocorrelation functions C(t)∣γC(t)|_{\gamma} and C(t)∣τC(t)|_{\tau} computed, respectively, at imposed strain γ\gamma and mean stress τ\tau. Focusing on permanent isotropic spring networks it is shown theoretically and computationally that in general G(t)=C(t)∣τ=C(t)∣γ+GeqG(t) = C(t)|_{\tau} = C(t)|_{\gamma} + G_{eq} for t>0t > 0 with GeqG_{eq} being the static equilibrium shear modulus. G(t)G(t) and C(t)∣γC(t)|_{\gamma} thus must become different for solids and it is impossible to obtain GeqG_{eq} alone from C(t)∣γC(t)|_{\gamma} as often assumed. We comment briefly on self-assembled transient networks where Geq(f)G_{eq}(f) must vanish for a finite scission-recombination frequency ff. We argue that G(t)=C(t)∣τ=C(t)∣γG(t) = C(t)|_{\tau} = C(t)|_{\gamma} should reveal an intermediate plateau set by the shear modulus Geq(f=0)G_{eq}(f=0) of the quenched network.Comment: 8 pages, 4 figure

    Static Rouse Modes and Related Quantities: Corrections to Chain Ideality in Polymer Melts

    Full text link
    Following the Flory ideality hypothesis intrachain and interchain excluded volume interactions are supposed to compensate each other in dense polymer systems. Multi-chain effects should thus be neglected and polymer conformations may be understood from simple phantom chain models. Here we provide evidence against this phantom chain, mean-field picture. We analyze numerically and theoretically the static correlation function of the Rouse modes. Our numerical results are obtained from computer simulations of two coarse-grained polymer models for which the strength of the monomer repulsion can be varied, from full excluded volume (`hard monomers') to no excluded volume (`phantom chains'). For nonvanishing excluded volume we find the simulated correlation function of the Rouse modes to deviate markedly from the predictions of phantom chain models. This demonstrates that there are nonnegligible correlations along the chains in a melt. These correlations can be taken into account by perturbation theory. Our simulation results are in good agreement with these new theoretical predictions.Comment: 9 pages, 7 figures, accepted for publication in EPJ

    Hyperbranched polymer stars with Gaussian chain statistics revisited

    Full text link
    Conformational properties of regular dendrimers and more general hyperbranched polymer stars with Gaussian statistics for the spacer chains between branching points are revisited numerically. We investigate the scaling for asymptotically long chains especially for fractal dimensions df=3d_f = 3 (marginally compact) and df=2.5d_f = 2.5 (diffusion limited aggregation). Power-law stars obtained by imposing the number of additional arms per generation are compared to truly self-similar stars. We discuss effects of weak excluded volume interactions and sketch the regime where the Gaussian approximation should hold in dense solutions and melts for sufficiently large spacer chains.Comment: 13 pages, 14 figure

    Stress Propagation and Arching in Static Sandpiles

    Full text link
    We present a new approach to the modelling of stress propagation in static granular media, focussing on the conical sandpile constructed from a point source. We view the medium as consisting of cohesionless hard particles held up by static frictional forces; these are subject to microscopic indeterminacy which corresponds macroscopically to the fact that the equations of stress continuity are incomplete -- no strain variable can be defined. We propose that in general the continuity equations should be closed by means of a constitutive relation (or relations) between different components of the (mesoscopically averaged) stress tensor. The primary constitutive relation relates radial and vertical shear and normal stresses (in two dimensions, this is all one needs). We argue that the constitutive relation(s) should be local, and should encode the construction history of the pile: this history determines the organization of the grains at a mesoscopic scale, and thereby the local relationship between stresses. To the accuracy of published experiments, the pattern of stresses beneath a pile shows a scaling between piles of different heights (RSF scaling) which severely limits the form the constitutive relation can take ...Comment: 38 pages, 24 Postscript figures, LATEX, minor misspellings corrected, Journal de Physique I, Ref. Nr. 6.1125, accepte
    • …
    corecore