410 research outputs found

    Weak Lensing Detection of Cl 1604+4304 at z = 0.90

    Full text link
    We present a weak lensing analysis of the high-redshift cluster Cl 1604+4304. At z=0.90, this is the highest-redshift cluster yet detected with weak lensing. It is also one of a sample of high-redshift, optically-selected clusters whose X-ray temperatures are lower than expected based on their velocity dispersions. Both the gas temperature and galaxy velocity dispersion are proxies for its mass, which can be determined more directly by a lensing analysis. Modeling the cluster as a singular isothermal sphere, we find that the mass contained within projected radius R is 3.69+-1.47 * (R/500 kpc) 10^14 M_odot. This corresponds to an inferred velocity dispersion of 1004+-199 km/s, which agrees well with the measured velocity dispersion of 989+98-76 km/s (Gal & Lubin 2004). These numbers are higher than the 575+110-85 km/s inferred from Cl 1604+4304 X-ray temperature, however all three velocity dispersion estimates are consistent within ~ 1.9 sigma.Comment: Revised version accepted for publication in AJ (January 2005). 2 added figures (6 figures total

    Discovery of a Galaxy Cluster via Weak Lensing

    Get PDF
    We report the discovery of a cluster of galaxies via its weak gravitational lensing effect on background galaxies, the first spectroscopically confirmed cluster to be discovered through its gravitational effects rather than by its electromagnetic radiation. This fundamentally different selection mechanism promises to yield mass-selected, rather than baryon or photon-selected, samples of these important cosmological probes. We have confirmed this cluster with spectroscopic redshifts of fifteen members at z=0.276, with a velocity dispersion of 615 km/s. We use the tangential shear as a function of source photometric redshift to estimate the lens redshift independently and find z_l = 0.30 +- 0.08. The good agreement with the spectroscopy indicates that the redshift evolution of the mass function may be measurable from the imaging data alone in shear-selected surveys.Comment: revised version with minor changes, to appear in ApJ

    Analysis of negative magnetoresistance. Statistics of closed paths. I. Theory

    Get PDF
    Statistics of closed paths in two-dimensional (2D) systems, which just determines the interference quantum correction to conductivity and anomalous magnetoconductance, has been studied by computer simulation of a particle motion over the plane with randomly distributed scatterers. Both ballistic and diffusion regimes have been considered. The results of simulation have been analyzed in the framework of diffusion approximation. They are used for calculation of the magnetic field dependence of magnetoconductance in the model 2D system. It is shown that the anomalous magnetoconductance can be in principle described by the well known expression, obtained in the diffusion approximation, but with the prefactor less than unity and phase breaking length which differs from true value.Comment: 10 pages, 12 figures, to be published in Phys.Rev.

    The Deep Lens Survey Transient Search I : Short Timescale and Astrometric Variability

    Full text link
    We report on the methodology and first results from the Deep Lens Survey transient search. We utilize image subtraction on survey data to yield all sources of optical variability down to 24th magnitude. Images are analyzed immediately after acquisition, at the telescope and in near-real time, to allow for followup in the case of time-critical events. All classes of transients are posted to the web upon detection. Our observing strategy allows sensitivity to variability over several decades in timescale. The DLS is the first survey to classify and report all types of photometric and astrometric variability detected, including solar system objects, variable stars, supernovae, and short timescale phenomena. Three unusual optical transient events were detected, flaring on thousand-second timescales. All three events were seen in the B passband, suggesting blue color indices for the phenomena. One event (OT 20020115) is determined to be from a flaring Galactic dwarf star of spectral type dM4. From the remaining two events, we find an overall rate of \eta = 1.4 events deg-2 day-1 on thousand-second timescales, with a 95% confidence limit of \eta < 4.3. One of these events (OT 20010326) originated from a compact precursor in the field of galaxy cluster Abell 1836, and its nature is uncertain. For the second (OT 20030305) we find strong evidence for an extended extragalactic host. A dearth of such events in the R passband yields an upper 95% confidence limit on short timescale astronomical variability between 19.5 < R < 23.4 of \eta_R < 5.2. We report also on our ensemble of astrometrically variable objects, as well as an example of photometric variability with an undetected precursor.Comment: 24 pages, 12 figures, 3 tables. Accepted for publication in ApJ. Variability data available at http://dls.bell-labs.com/transients.htm

    Imaging mass in three dimensions

    Get PDF
    We explore a possible "killer app" for the LSST and similar surveys: imaging mass in three dimensions. We describe its scientific importance, practical techniques for realizing it, the current state of the art and how it might scale to the LSST

    Magnetic Moments of the Baryon Decuplet in a Relativistic Quark Model

    Full text link
    The magnetic moments of the baryon decuplet are calculated in a relativistic constituent quark model using the light-front formalism. Of particular interest are the magnetic moments of the Ω\Omega^- and Δ++\Delta^{++} for which new recent experimental measurements are available. Our calculation for the magnetic moment ratio μ(Δ++)/μ(p)\mu(\Delta^{++})/\mu(p) is in excellent agreement with the experimental ratio, while our ratio μ(Ω)/μ(Λ0)\mu(\Omega^-)/\mu(\Lambda^0) is slightly higher than the experimental ratio.Comment: 10 pages ReVTeX, SLAC-PUB-621

    Electron-electron interaction at decreasing kFlk_Fl

    Full text link
    The contribution of the electron-electron interaction to conductivity is analyzed step by step in gated GaAs/InGaAs/GaAs heterostructures with different starting disorder. We demonstrate that the diffusion theory works down to kFl1.52k_F l\simeq 1.5-2, where kFk_F is the Fermi quasimomentum, ll is the mean free paths. It is shown that the e-e interaction gives smaller contribution to the conductivity than the interference independent of the starting disorder and its role rapidly decreases with kFlk_Fl decrease.Comment: 5 pages, 6 figure

    Three-Point Correlations in Weak Lensing Surveys: Model Predictions and Applications

    Full text link
    We use the halo model of clustering to compute two- and three-point correlation functions for weak lensing, and apply them in a new statistical technique to measure properties of massive halos. We present analytical results on the eight shear three-point correlation functions constructed using combination of the two shear components at each vertex of a triangle. We compare the amplitude and configuration dependence of the functions with ray-tracing simulations and find excellent agreement for different scales and models. These results are promising, since shear statistics are easier to measure than the convergence. In addition, the symmetry properties of the shear three-point functions provide a new and precise way of disentangling the lensing E-mode from the B-mode due to possible systematic errors. We develop an approach based on correlation functions to measure the properties of galaxy-group and cluster halos from lensing surveys. Shear correlations on small scales arise from the lensing matter within halos of mass M > 10^13 solar masses. Thus the measurement of two- and three-point correlations can be used to extract information on halo density profiles, primarily the inner slope and halo concentration. We demonstrate the feasibility of such an analysis for forthcoming surveys. We include covariances in the correlation functions due to sample variance and intrinsic ellipticity noise to show that 10% accuracy on profile parameters is achievable with surveys like the CFHT Legacy survey, and significantly better with future surveys. Our statistical approach is complementary to the standard approach of identifying individual objects in survey data and measuring their properties.Comment: 30 pages, 21 figures. Corrected typos in equations (23) and (28). Matches version for publication in MNRA

    Weak Lensing Discovery and Tomography of a Cluster at z=0.68

    Get PDF
    We report the weak lensing discovery, spectroscopic confirmation, and weak lensing tomography of a massive cluster of galaxies at z=0.68z=0.68, demonstrating that shear selection of clusters works at redshifts high enough to be cosmologically interesting. The mass estimate from weak lensing, 11.1+2.8x1014(r/Mpc)11.1 +- 2.8 x 10^{14} (r/Mpc) solar masses within projected radius r, agrees with that derived from the spectroscopy (σv=980kms1\sigma_v = 980 km s^{-1}), and with the position of an arc which is likely to be a strongly lensed background galaxy. The redshift estimate from weak lensing tomography is consistent with the spectroscopy, demonstrating the feasibility of baryon-unbiased mass surveys. This tomographic technique will be able to roughly identify the redshifts of any dark clusters which may appear in shear-selected samples, up to z ~ 1.Comment: Final version. Substantially expanded from first version, including more detail, more figures, and more mass estimates, including an M/L estimate. Basic conclusions unchange

    Does theory of quantum correction to conductivity agree with experimental data in 2D systems?

    Full text link
    The quantum correction to the conductivity have been studied in two types of 2D heterostructures: with doped quantum well and doped barriers. The consistent analysis shows that in the structures where electrons occupy the states in quantum well only, all the temperature and magnetic field dependencies of the components of resistivity tensor are well described by the theories of quantum corrections. The contribution of electron-electron interaction to the conductivity have been determined reliably in the structures with different electron density. A possible reason of large scatter in experimental data concerning the contribution of electron-electron interaction, obtained in previous papers, and the role of the carriers, occupied the states of the doped layers, is discussed.Comment: 10 pages with 9 figure
    corecore