405 research outputs found
Comparison of structural transformations and superconductivity in compressed Sulfur and Selenium
Density-functional calculations are presented for high-pressure structural
phases of S and Se. The structural phase diagrams, phonon spectra,
electron-phonon coupling, and superconducting properties of the isovalent
elements are compared. We find that with increasing pressure, Se adopts a
sequence of ever more closely packed structures (beta-Po, bcc, fcc), while S
favors more open structures (beta-Po, simple cubic, bcc). These differences are
shown to be attributable to differences in the S and Se core states. All the
compressed phases of S and Se considered are calculated to have weak to
moderate electron-phonon coupling strengths consistent with superconducting
transition temperatures in the range of 1 to 20 K. Our results compare well
with experimental data on the beta-Po --> bcc transition pressure in Se and on
the superconducting transition temperature in beta-Po S. Further experiments
are suggested to search for the other structural phases predicted at higher
pressures and to test theoretical results on the electron-phonon interaction
and superconducting properties
SBML Level 3: an extensible format for the exchange and reuse of biological models
Systems biology has experienced dramatic growth in the number, size, and complexity of computational models. To reproduce simulation results and reuse models, researchers must exchange unambiguous model descriptions. We review the latest edition of the Systems Biology Markup Language (SBML), a format designed for this purpose. A community of modelers and software authors developed SBML Level 3 over the past decade. Its modular form consists of a core suited to representing reaction-based models and packages that extend the core with features suited to other model types including constraint-based models, reaction-diffusion models, logical network models, and rule-based models. The format leverages two decades of SBML and a rich software ecosystem that transformed how systems biologists build and interact with models. More recently, the rise of multiscale models of whole cells and organs, and new data sources such as single-cell measurements and live imaging, has precipitated new ways of integrating data with models. We provide our perspectives on the challenges presented by these developments and how SBML Level 3 provides the foundation needed to support this evolution
31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two
Background
The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd.
Methods
We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background.
Results
First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001).
Conclusions
In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival
Optically addressable nuclear spins in a solid with a six-hour coherence time
Space-like separation of entangled quantum states is a central concept in fundamental investigations of quantum mechanics and in quantum communication applications. Optical approaches are ubiquitous in the distribution of entanglement because entangled photons are easy to generate and transmit. However, extending this direct distribution beyond a range of a few hundred kilometres to a worldwide network is prohibited by losses associated with scattering, diffraction and absorption during transmission. A proposal to overcome this range limitation is the quantum repeater protocol, which involves the distribution of entangled pairs of optical modes among many quantum memories stationed along the transmission channel. To be effective, the memories must store the quantum information encoded on the optical modes for times that are long compared to the direct optical transmission time of the channel. Here we measure a decoherence rate of 8 × 10(-5) per second over 100 milliseconds, which is the time required for light transmission on a global scale. The measurements were performed on a ground-state hyperfine transition of europium ion dopants in yttrium orthosilicate ((151)Eu(3+):Y2SiO5) using optically detected nuclear magnetic resonance techniques. The observed decoherence rate is at least an order of magnitude lower than that of any other system suitable for an optical quantum memory. Furthermore, by employing dynamic decoupling, a coherence time of 370 ± 60 minutes was achieved at 2 kelvin. It has been almost universally assumed that light is the best long-distance carrier for quantum information. However, the coherence time observed here is long enough that nuclear spins travelling at 9 kilometres per hour in a crystal would have a lower decoherence with distance than light in an optical fibre. This enables some very early approaches to entanglement distribution to be revisited, in particular those in which the spins are transported rather than the light.This work was supported by the Australian Research Council Centre of Excellence for Quantum Computation and Communication Technology (CE110001027), and M.J.S. was supported by an Australian Research Council Future
Fellowship (FT110100919). J.J.L. was supported by the Marsden Fund of the Royal Society of New Zealand (contract UOO1221)
Protection against FIV challenge infection by genetic vaccination using minimalistic DNA constructs for FIV env gene and feline IL-12 expression
OBJECTIVE: To evaluate the efficacy of a genetic vaccination protocol based on minimalistic, immunogenic defined gene expression (MIDGE) vectors coding for domains of the feline immunodeficiency virus (FIV) env gene and feline IL-12.
METHODS: Three groups of four cats each were immunized three times within 6 weeks by the ballistic transfer of gold particles coated with MIDGE vectors. Group 1 received non-coated gold beads, groups 2 and 3 MIDGE vectors expressing FIV surface plus part of the transmembrane protein. In addition, group 3 received feline IL-12 DNA. All cats were challenged by intraperitoneal injection of 25 TCID50 of infectious FIV Z2. The following criteria were monitored: clinical signs, antibodies to transmembrane protein, antibodies to whole FIV, haematological parameters and kinetics of CD4 and CD8 cells, FIV proviral load (determined by quantitative polymerase chain reaction; PCR) and cytotoxic T lymphocyte (CTL) activity (in selected cats).
RESULTS: None of the cats developed a detectable antibody response during immunizations. Four weeks after challenge exposure, all cats in group 1 (control) and group 2 (FIV surface-transmembrane protein) had seroconverted and showed a high proviral load until week 19 (end of experiment). In contrast, only one of four cats in group 3 (surface-transmembrane protein and IL-12) showed antibodies; it was provirus positive at reduced virus load. Short-lived CTL activity was found in two cats in group 3.
CONCLUSION: Genetic vaccination using a MIDGE-based construct for the expression of the surface-transmembrane protein domain of FIV env and feline IL-12 DNA led to protection against homologous virus challenge in three out of four vaccinated cats
- …