6,474 research outputs found

    Gas ion laser construction for electrically isolating the pressure gauge thereof

    Get PDF
    The valve and the pressure gauge of a gas ion laser were electrically insulated from the laser discharge path by connecting them in series with the cathode of the laser. The laser cathode can be grounded and preferably is a cold cathode although a hot cathode may be used instead. The cold cathode was provided with a central aperture to which was connected both the pressure gauge and the gas pressure reservoir through the valve. This will effectively prevent electric discharges from passing either to the pressure gauge or the valve which would otherwise destroy the pressure gauge

    Analysis, Test and Simulation of Landing System Touchdown Dynamics

    Get PDF
    Future exploration missions pose demanding requirements towards the access by vehicles to scientifically interesting sites on planetary surfaces. These stem particularly from the need of more flexibility in site selection, improved payload to vehicle mass ratios and higher mission success probabilities. The Landing Technology group of the DLR Institute of Space Systems is focusing on the development and verification of experimental and analytical methods for the investigation of the touchdown dynamics of landing system, its capabilities the embedding into the landing site assessment. Core element for the experimental investigation is the Landing & Mobility Test Facility (LAMA), which allows touchdown testing under Earth gravity and under a reduced gravitational environment using an active off-loading device. The test article for investigation of legged landing systems is a modular Lander Engineering Model (LEM) designed by the Astrium ST (Bremen), representing today's European mission scenarios to the Moon and Mars such as the ESA Lunar Lander or the ESA Mars Precision Lander. Another test object recently under retesting is the Rosetta lander Philae representing a touch down system concept developed for small body landings. Usually not all relevant environmental properties of the target landing site can be provided in one single and complete test, any verification approach has to be supported by adequate numerical analyses. Thus, another key topic for the verification of the touchdown performance of a landing system is the accurate analytical and numerical representation of the flight system, its touchdown conditions and the landing site. In this area the research focuses on the development of high fidelity engineering simulations of the vehicle-to-terrain/soil interaction. The landing site characterization and assessment focuses on the development of landing site assessment methods and tools and to provide terrain models for engineering simulations (both touchdown dynamics and/or hazard detection& avoidance simulations). In return landing system performance limits are mapped onto cartographic landing site representations to support the landing safety assessment. This poster outlines the test facility, simulation and analysis tools developed by the working group and used in recent landing missions

    The Effect of Training on Stride Duration in a Cohort of Two-Year-Old and Three-Year-Old Thoroughbred Racehorses

    Get PDF
    Objective gait monitoring is increasingly accessible to trainers. A more comprehensive understanding of ‘normal’ gait adaptations is required. Forty two-year-old thoroughbred racehorses were recruited when entering training and followed for 22 months. Gait analysis was performed by equipping each horse with an inertial measurement unit with inbuilt GPS (GPS-IMU) mounted on the dorsum. Horses were exercised as per their regular training regimen. Data were analysed using a linear mixed model. For two-year-old horses, there was a non-linear pattern of stride duration (SD) over time (p < 0.001) with SD decreasing initially and then ‘flattening off’ over time (linear and quadratic coefficients −0.29 ms/week and 0.006 ms/week2). Horses showed an increase in SD of 2.21 ms (p < 0.001) per 100 m galloped, and over time, SD decreased by 0.04 ms (p < 0.001) with each 100 m galloped per week. Three-year-old horses overall showed no change in SD over time (p = 0.52), but those that had a period of time off showed a decrease in SD of −0.59 ms per week (p = 0.02). They showed an increase in SD of 1.99 ms (p < 0.001) per 100 m galloped, and horses that had a period of time off showed an increase in stride duration of 1.05 ms per 100 m galloped (p = 0.01) compared to horses which did not have time off. Horses demonstrate an adaptation to high-speed exercise over time. SD decreases with training when other factors are controlled for in naïve horses

    Isomonodromic deformation theory and the next-to-diagonal correlations of the anisotropic square lattice Ising model

    Full text link
    In 1980 Jimbo and Miwa evaluated the diagonal two-point correlation function of the square lattice Ising model as a Ï„\tau-function of the sixth Painlev\'e system by constructing an associated isomonodromic system within their theory of holonomic quantum fields. More recently an alternative isomonodromy theory was constructed based on bi-orthogonal polynomials on the unit circle with regular semi-classical weights, for which the diagonal Ising correlations arise as the leading coefficient of the polynomials specialised appropriately. Here we demonstrate that the next-to-diagonal correlations of the anisotropic Ising model are evaluated as one of the elements of this isomonodromic system or essentially as the Cauchy-Hilbert transform of one of the bi-orthogonal polynomials.Comment: 11 pages, 1 figur

    Lightlike infinity in GCA models of Spacetime

    Full text link
    This paper discusses a 7 dimensional conformal geometric algebra model for spacetime based on the notion that spacelike and timelike infinities are distinct. I show how naturally of the dimensions represents the lightlike infinity and appears redundant in computations, yet usefull in interpretationComment: 12 page

    Random Matrix Theory and the Sixth Painlev\'e Equation

    Full text link
    A feature of certain ensembles of random matrices is that the corresponding measure is invariant under conjugation by unitary matrices. Study of such ensembles realised by matrices with Gaussian entries leads to statistical quantities related to the eigenspectrum, such as the distribution of the largest eigenvalue, which can be expressed as multidimensional integrals or equivalently as determinants. These distributions are well known to be τ\tau-functions for Painlev\'e systems, allowing for the former to be characterised as the solution of certain nonlinear equations. We consider the random matrix ensembles for which the nonlinear equation is the σ\sigma form of \PVI. Known results are reviewed, as is their implication by way of series expansions for the distributions. New results are given for the boundary conditions in the neighbourhood of the fixed singularities at t=0,1,∞t=0,1,\infty of σ\sigma\PVI displayed by a generalisation of the generating function for the distributions. The structure of these expansions is related to Jimbo's general expansions for the τ\tau-function of σ\sigma\PVI in the neighbourhood of its fixed singularities, and this theory is itself put in its context of the linear isomonodromy problem relating to \PVI.Comment: Dedicated to the centenary of the publication of the Painlev\'e VI equation in the Comptes Rendus de l'Academie des Sciences de Paris by Richard Fuchs in 190

    Microdroplet-tin plasma sources of EUV radiation driven by solid-state-lasers (Topical Review)

    Get PDF
    Plasma produced from molten-tin microdroplets generates extreme ultraviolet light for state-of-the-art nanolithography. Currently, CO2 lasers are used to drive the plasma. In the future, solid-state mid-infrared lasers may instead be used to efficiently pump the plasma. Such laser systems have promise to be more compact, better scalable, and have higher wall-plug efficiency. In this Topical Review, we present recent findings made at the Advanced Research Center for Nanolithography (ARCNL) on using 1 and 2 μm wavelength solid-state lasers for tin target preparation and for driving hot and dense plasma. The ARCNL research ranges from advanced laser development, studies of fluid dynamic response of droplets to impact, radiation-hydrodynamics calculations of, e.g. ion 'debris', (EUV) spectroscopic studies of tin laser-produced-plasma as well as high-conversion efficiency operation of 2 μm wavelength driven plasma

    Comparison of missing data approaches in linkage analysis

    Get PDF
    BACKGROUND: Observational cohort studies have been little used in linkage analyses due to their general lack of large, disease-specific pedigrees. Nevertheless, the longitudinal nature of such studies makes them potentially valuable for assessing the linkage between genotypes and temporal trends in phenotypes. The repeated phenotype measures in cohort studies (i.e., across time), however, can have extensive missing information. Existing methods for handling missing data in observational studies may decrease efficiency, introduce biases, and give spurious results. The impact of such methods when undertaking linkage analysis of cohort studies is unclear. Therefore, we compare here six methods of imputing missing repeated phenotypes on results from genome-wide linkage analyses of four quantitative traits from the Framingham Heart Study cohort. RESULTS: We found that simply deleting observations with missing values gave many more nominally statistically significant linkages than the other five approaches. Among the latter, those with similar underlying methodology (i.e., imputation- versus model-based) gave the most consistent results, although some discrepancies remained. CONCLUSION: Different methods for addressing missing values in linkage analyses of cohort studies can give substantially diverse results, and must be carefully considered to protect against biases and spurious findings

    Ion distribution and ablation depth measurements of a fs-ps laser-irradiated solid tin target

    Get PDF
    The ablation of solid tin surfaces by an 800-nanometer-wavelength laser is studied for a pulse length range from 500 fs to 4.5 ps and a fluence range spanning 0.9 to 22 J/cm^2. The ablation depth and volume are obtained employing a high-numerical-aperture optical microscope, while the ion yield and energy distributions are obtained from a set of Faraday cups set up under various angles. We found a slight increase of the ion yield for an increasing pulse length, while the ablation depth is slightly decreasing. The ablation volume remained constant as a function of pulse length. The ablation depth follows a two-region logarithmic dependence on the fluence, in agreement with the available literature and theory. In the examined fluence range, the ion yield angular distribution is sharply peaked along the target normal at low fluences but rapidly broadens with increasing fluence. The total ionization fraction increases monotonically with fluence to a 5-6% maximum, which is substantially lower than the typical ionization fractions obtained with nanosecond-pulse ablation. The angular distribution of the ions does not depend on the laser pulse length within the measurement uncertainty. These results are of particular interest for the possible utilization of fs-ps laser systems in plasma sources of extreme ultraviolet light for nanolithography.Comment: 8 pages, 7 figure
    • …
    corecore