38 research outputs found

    Endothelial signaling in paracellular and transcellular leukocyte transmigration

    Get PDF
    As the primary physical barrier between blood and tissue compartments within the body, blood vessel endothelial cells and integrity of the cell junctions connecting them must be carefully regulated to support leukocyte transendothelial migration only when necessary. Leukocytes utilize two independent routes across the endothelium: the paracellular route involves migration in-between adjacent endothelial cells and requires the transient disassembly of endothelial cell junctions, while the transcellular route occurs directly through an individual endothelial cell, likely requiring the formation of a channel or pore. In this review, I will first summarize the signaling events that are transduced by leukocyte engagement of endothelial cell-surface receptors like ICAM-1 and VCAM-1. Some of these signals include activation of GTPases, production of reactive oxygen species, and phosphorylation of target proteins. These signaling pathways converge to cause junctional disruption, cytoskeletal remodeling, and/or the membrane fusion events that are associated with leukocyte transendothelial migration. The review will conclude with a detailed discussion of the newly characterized transmigratory cup structure, and the recent advances made towards understanding the mechanisms of transcellular transendothelial migration

    The tension mounts: Stress fibers as force-generating mechanotransducers

    Get PDF
    Stress fibers (SFs) are often the most prominent cytoskeletal structures in cells growing in tissue culture. Composed of actin filaments, myosin II, and many other proteins, SFs are force-generating and tension-bearing structures that respond to the surrounding physical environment. New work is shedding light on the mechanosensitive properties of SFs, including that these structures can respond to mechanical tension by rapid reinforcement and that there are mechanisms to repair strain-induced damage. Although SFs are superficially similar in organization to the sarcomeres of striated muscle, there are intriguing differences in their organization and behavior, indicating that much still needs to be learned about these structures

    Direct Activation of RhoA by Reactive Oxygen Species Requires a Redox-Sensitive Motif

    Get PDF
    BACKGROUND:Rho family GTPases are critical regulators of the cytoskeleton and affect cell migration, cell-cell adhesion, and cell-matrix adhesion. As with all GTPases, their activity is determined by their guanine nucleotide-bound state. Understanding how Rho proteins are activated and inactivated has largely focused on regulatory proteins such as guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs). However, recent in vitro studies have indicated that GTPases may also be directly regulated by redox agents. We hypothesized that this redox-based mechanism occurs in cells and affects cytoskeletal dynamics, and in this report we conclude this is indeed a novel mechanism of regulating the GTPase RhoA. METHODOLOGY/PRINCIPAL FINDINGS:In this report, we show that RhoA can be directly activated by reactive oxygen species (ROS) in cells, and that this requires two critical cysteine residues located in a unique redox-sensitive motif within the phosphoryl binding loop. First, we show that ROS can reversibly activate RhoA and induce stress fiber formation, a well characterized readout of RhoA activity. To determine the role of cysteine residues in this mechanism of regulation, we generated cysteine to alanine RhoA mutants. Mutation of these cysteines abolishes ROS-mediated activation and stress fiber formation, indicating that these residues are critical for redox-regulation of RhoA. Importantly, these mutants maintain the ability to be activated by GEFs. CONCLUSIONS/SIGNIFICANCE:Our findings identify a novel mechanism for the regulation of RhoA in cells by ROS, which is independent of classical regulatory proteins. This mechanism of regulation may be particularly relevant in pathological conditions where ROS are generated and the cellular redox-balance altered, such as in asthma and ischemia-reperfusion injury

    The Small GTPase Rap1 Is a Novel Regulator of RPE Cell Barrier Function

    Get PDF
    To determine whether the small GTPase Rap1 regulates the formation and maintenance of the retinal pigment epithelial (RPE) cell junctional barrier

    Rap1 GTPase Inhibits Tumor Necrosis Factor-α–Induced Choroidal Endothelial Migration via NADPH Oxidase– and NF-ÎșB–Dependent Activation of Rac1

    Get PDF
    Macrophage-derived tumor necrosis factor (TNF)-α has been found in choroidal neovascularization (CNV) surgically removed from patients with age-related macular degeneration. However, the role of TNF-α in CNV development remains unclear. In a murine laser-induced CNV model, compared with un-lasered controls, TNF-α mRNA was increased in retinal pigment epithelial and choroidal tissue, and TNF-α colocalized with lectin-stained migrating choroidal endothelial cells (CECs). Inhibition of TNF-α with a neutralizing antibody reduced CNV volume and reactive oxygen species (ROS) level around CNV. In CECs, pretreatment with the antioxidant apocynin or knockdown of p22phox, a subunit of NADPH oxidase, inhibited TNF-α–induced ROS generation. Apocynin reduced TNF-α–induced NF-ÎșB and Rac1 activation, and inhibited TNF-α–induced CEC migration. TNF-α–induced Rac1 activation and CEC migration were inhibited by NF-ÎșB inhibitor Bay11-7082. Overexpression of Rap1a prevented TNF-α–induced ROS generation and reduced NF-ÎșB and Rac1 activation. Activation of Rap1 by 8-(4-chlorophenylthio)adenosine-2â€Č-O-Me-cAMP prevented TNF-α–induced CEC migration and reduced laser-induced CNV volume, ROS generation, and activation of NF-ÎșB and Rac1. These findings provide evidence that active Rap1a inhibits TNF-α–induced CEC migration by inhibiting NADPH oxidase-dependent NF-ÎșB and Rac1 activation and suggests that Rap1a de-escalates CNV development by interfering with ROS-dependent signaling in several steps of the pathogenic process

    Heterotypic RPE-choroidal endothelial cell contact increases choroidal endothelial cell transmigration via PI 3-kinase and Rac1

    Get PDF
    Age-related macular degeneration (AMD) is the major cause of non-preventable blindness. Severe forms of AMD involve breaching of the retinal pigment epithelial (RPE) barrier by underlying choroidal endothelial cells (CECs), followed by migration into, and subsequent neovascularization of the neurosensory retina. However, little is known about the interactions between RPE and CECs and the signaling events leading to CEC transmigration. While soluble chemotactic factors secreted from RPE can contribute to inappropriate CEC transmigration, other unidentified stimuli may play an additional role. Using a coculture model that maintains the natural structural orientation of CECs to the basal aspect of RPE, we show that “contact” with RPE and/or RPE extracellular matrix increases CEC transmigration of the RPE barrier. From a biochemical standpoint, contact between CECs and RPE results in an increase in the activity of the GTPase Rac1 within the CECs; this increase is dependent on upstream activation of PI 3-K and Akt1. To confirm a link between these signaling molecules and increased CEC transmigration, we performed transmigration assays while inhibiting both PI 3-K and Rac1 activity, and observed that both decreased CEC transmigration. We hypothesize that contact between CECs and RPE stimulates a signaling pathway involving PI 3-K, Akt1, and Rac1 that facilitates CEC transmigration across the RPE barrier, an important step in the development of neovascular AMD

    Unique Structural and Nucleotide Exchange Features of the Rho1 GTPase of Entamoeba histolytica

    Get PDF
    The single-celled human parasite Entamoeba histolytica possesses a dynamic actin cytoskeleton vital for its intestinal and systemic pathogenicity. The E. histolytica genome encodes several Rho family GTPases known to regulate cytoskeletal dynamics. EhRho1, the first family member identified, was reported to be insensitive to the Rho GTPase-specific Clostridium botulinum C3 exoenzyme, raising the possibility that it may be a misclassified Ras family member. Here, we report the crystal structures of EhRho1 in both active and inactive states. EhRho1 is activated by a conserved switch mechanism, but diverges from mammalian Rho GTPases in lacking a signature Rho insert helix. EhRho1 engages a homolog of mDia, EhFormin1, suggesting a role in mediating serum-stimulated actin reorganization and microtubule formation during mitosis. EhRho1, but not a constitutively active mutant, interacts with a newly identified EhRhoGDI in a prenylation-dependent manner. Furthermore, constitutively active EhRho1 induces actin stress fiber formation in mammalian fibroblasts, thereby identifying it as a functional Rho family GTPase. EhRho1 exhibits a fast rate of nucleotide exchange relative to mammalian Rho GTPases due to a distinctive switch one isoleucine residue reminiscent of the constitutively active F28L mutation in human Cdc42, which for the latter protein, is sufficient for cellular transformation. Nonconserved, nucleotide-interacting residues within EhRho1, revealed by the crystal structure models, were observed to contribute a moderating influence on fast spontaneous nucleotide exchange. Collectively, these observations indicate that EhRho1 is a bona fide member of the Rho GTPase family, albeit with unique structural and functional aspects compared with mammalian Rho GTPases

    Rap1 GTPase Inhibits Leukocyte Transmigration by Promoting Endothelial Barrier Function

    Get PDF
    The passage of leukocytes out of the blood circulation and into tissues is necessary for the normal inflammatory response, but it also occurs inappropriately in many pathological situations. This process is limited by the barrier presented by the junctions between adjacent endothelial cells that line blood vessels. Here we show that activation of the Rap1 GTPase in endothelial cells accelerated de novo assembly of endothelial cell-cell junctions and increased the barrier function of endothelial monolayers. In contrast, depressing Rap1 activity by expressing Rap1GAP led to disassembly of these junctions and increased their permeability. We also demonstrate that endogenous Rap1 was rapidly activated at early stages of junctional assembly, confirming the involvement of Rap1 during junctional assembly. Intriguingly, elevating Rap1 activity selectively within endothelial cells decreased leukocyte transendothelial migration, whereas inhibiting Rap1 activity by expression of Rap1GAP increased leukocyte transendothelial migration, providing physiological relevance to our hypothesis that Rap1 augments barrier function of inter-endothelial cell junctions. Furthermore, these results suggest that Rap1 may be a novel therapeutic target for clinical conditions in which an inappropriate inflammatory response leads to disease

    Retinal pigment epithelial cell expression of active Rap 1a by scAAV2 inhibits choroidal neovascularization

    Get PDF
    To test the hypothesis that increased Rap1a activity specifically in retinal pigment epithelial cells resists choroidal neovascularization (CNV), self-complementary adeno-associated virus 2 (scAAV2) with RPE65-promoter-driven GFP vectors were generated and introduced subretinally into Rap1b-deficient mice. Six-week-old mice that received subretinal control (scAAV2-Con) or constitutively active Rap1a (scAAV2-CARap1a) showed strong GFP at the 5 × 10(8) viral particle/”l dose 5 weeks later without altering retinal morphology or function. Compared to scAAV2-Con- or phosphate-buffered saline (PBS)-injected, eyes injected with scAAV2-CARap1a had increased Rap1 in retinal pigment epithelial (RPE)/choroidal lysates and a significant reduction in CNV volume 7 days after laser, comparable to eyes that received intravitreal anti-VEGF versus IgG control. scAAV2-CARap1a-, but not anti-VEGF-, injected eyes had increased pan-cadherin in RPE/choroids. In cultured RPE cells, increased active Rap1a inhibited TNFα-induced disassociation of junctional pan-cadherin/ÎČ-catenin complexes, increased transepithelial electrical resistance through an interaction of ÎČ-catenin with phosphorylated scaffold protein, IQGAP1, and inhibited choroidal endothelial cell (CEC) transmigration of an RPE monolayer. This evidence shows that increased Rap1a activity specifically in RPE cells is sufficient to reduce CEC transmigration and CNV and involves IQGAP1-mediated protection of RPE junctional complexes

    Gender bias revisited: new insights on the differential management of chest pain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chest pain is a common complaint and reason for consultation in primary care. Few data exist from a primary care setting whether male patients are treated differently than female patients. We examined whether there are gender differences in general physicians' (GPs) initial assessment and subsequent management of patients with chest pain, and how these differences can be explained</p> <p>Methods</p> <p>We conducted a prospective study with 1212 consecutive chest pain patients. The study was conducted in 74 primary care offices in Germany from October 2005 to July 2006. After a follow up period of 6 months, an independent interdisciplinary reference panel reviewed clinical data of every patient and decided about the etiology of chest pain at the time of patient recruitment (delayed type-reference standard). We adjusted gender differences of six process indicators for different models.</p> <p>Results</p> <p>GPs tended to assume that CHD is the cause of chest pain more often in male patients and referred more men for an exercise test (women 4.1%, men 7.3%, p = 0.02) and to the hospital (women 2.9%, men 6.6%, p < 0.01). These differences remained when adjusting for age and cardiac risk factors but ceased to exist after adjusting for the typicality of chest pain.</p> <p>Conclusions</p> <p>While observed gender differences can not be explained by differences in age, CHD prevalence, and underlying risk factors, the less typical symptom presentation in women might be an underlying factor. However this does not seem to result in suboptimal management in women but rather in overuse of services for men. We consider our conclusions rather hypothesis generating and larger studies will be necessary to prove our proposed model.</p
    corecore