6,105 research outputs found

    Gravitational Lenses With More Than Four Images: I. Classification of Caustics

    Full text link
    We study the problem of gravitational lensing by an isothermal elliptical density galaxy in the presence of a tidal perturbation. When the perturbation is fairly strong and oriented near the galaxy's minor axis, the lens can produce image configurations with six or even eight highly magnified images lying approximately on a circle. We classify the caustic structures in the model and identify the range of models that can produce such lenses. Sextuple and octuple lenses are likely to be rare because they require special lens configurations, but a full calculation of the likelihood will have to include both the existence of lenses with multiple lens galaxies and the strong magnification bias that affects sextuple and octuple lenses. At optical wavelengths these lenses would probably appear as partial or complete Einstein rings, but at radio wavelengths the individual images could probably be resolved.Comment: 30 pages, including 12 postscript figures; accepted for publication in Ap

    The Post-Newtonian Limit of f(R)-gravity in the Harmonic Gauge

    Full text link
    A general analytic procedure is developed for the post-Newtonian limit of f(R)f(R)-gravity with metric approach in the Jordan frame by using the harmonic gauge condition. In a pure perturbative framework and by using the Green function method a general scheme of solutions up to (v/c)4(v/c)^4 order is shown. Considering the Taylor expansion of a generic function ff it is possible to parameterize the solutions by derivatives of ff. At Newtonian order, (v/c)2(v/c)^2, all more important topics about the Gauss and Birkhoff theorem are discussed. The corrections to "standard" gravitational potential (tttt-component of metric tensor) generated by an extended uniform mass ball-like source are calculated up to (v/c)4(v/c)^4 order. The corrections, Yukawa and oscillating-like, are found inside and outside the mass distribution. At last when the limit fRf\rightarrow R is considered the f(R)f(R)-gravity converges in General Relativity at level of Lagrangian, field equations and their solutions.Comment: 16 pages, 10 figure

    Workers Compensation-Reported Injuries Among Security and Law Enforcement Personnel in the Private Versus Public Sectors

    Get PDF
    Background: Private and Public security and law enforcement (SLE) sectors perform multiple overlapping job duties. Methods: Workers’ compensation (WC) SLE first reports of injury (FROI) data (2005–2015) were analyzed to describe injuries, identify differences in awarded WC benefits, and compare the probability of a FROI resulting in awarded benefits between Public and Private SLE. A Pearson’s chi-square test was utilized and reverse selection logistic regression was performed to estimate the odds ratio that a FROI would result in an awarded benefit for Private vs. Public SLE, while adjusting for relevant covariates. Results: Private SLE had higher FROI percentages for younger and for older workers, fall injuries, and back injuries, compared to Public SLE. The adjusted odds that a FROI resulted in an awarded benefit was 1.4 times higher for Private SLE compared to Public SLE; (95% confidence interval [CI] = 1.09,1.69). Middle-aged SLE employee adjusted odds of awarded benefits was 3.3 times (95% CI [1.96, 5.39]) higher compared to younger employees. Adjusted odds of awarded benefits was 3.8 times (95% CI [1.34, 10.61]) higher for gunshots and 1.7 times (95% CI [1.22, 2.39]) higher for fractures/dislocations compared to other nature of injuries. Motor vehicle injury, fall/slip, and strain related FROIs had elevated adjusted odds of awarded benefits compared to other injury causes. Conclusions: Results highlight the importance of injury prevention education and worker safety training for Private and Public SLE sector workers on fall prevention (especially in Private SLE) and strain prevention (especially in Public SLE), as well as motor vehicle safety

    Semiclassical and Quantum Black Holes and their Evaporation, de Sitter and Anti-de Sitter Regimes, Gravitational and String Phase Transitions

    Full text link
    An effective string theory in physically relevant cosmological and black hole space times is reviewed. Explicit computations of the quantum string entropy, partition function and quantum string emission by black holes (Schwarzschild, rotating, charged, asymptotically flat, de Sitter dS and AdS space times) in the framework of effective string theory in curved backgrounds provide an amount of new quantum gravity results as: (i) gravitational phase transitions appear with a distinctive universal feature: a square root branch point singularity in any space time dimensions. This is of the type of the de Vega - Sanchez transition for the thermal self-gravitating gas of point particles. (ii) There are no phase transitions in AdS alone. (iii) For dSdS background, upper bounds of the Hubble constant H are found, dictated by the quantum string phase transition.(iv) The Hawking temperature and the Hagedorn temperature are the same concept but in different (semiclassical and quantum) gravity regimes respectively. (v) The last stage of black hole evaporation is a microscopic string state with a finite string critical temperature which decays as usual quantum strings do in non-thermal pure quantum radiation (no information loss).(vi) New lower string bounds are given for the Kerr-Newman black hole angular momentum and charge, which are entirely different from the upper classical bounds. (vii) Semiclassical gravity states undergo a phase transition into quantum string states of the same system, these states are duals of each other in the precise sense of the usual classical-quantum (wave-particle) duality, which is universal irrespective of any symmetry or isommetry of the space-time and of the number or the kind of space-time dimensions.Comment: review paper, no figures. to appear in Int Jour Mod Phys

    Exotic Spaces in Quantum Gravity I: Euclidean Quantum Gravity in Seven Dimensions

    Get PDF
    It is well known that in four or more dimensions, there exist exotic manifolds; manifolds that are homeomorphic but not diffeomorphic to each other. More precisely, exotic manifolds are the same topological manifold but have inequivalent differentiable structures. This situation is in contrast to the uniqueness of the differentiable structure on topological manifolds in one, two and three dimensions. As exotic manifolds are not diffeomorphic, one can argue that quantum amplitudes for gravity formulated as functional integrals should include a sum over not only physically distinct geometries and topologies but also inequivalent differentiable structures. But can the inclusion of exotic manifolds in such sums make a significant contribution to these quantum amplitudes? This paper will demonstrate that it will. Simply connected exotic Einstein manifolds with positive curvature exist in seven dimensions. Their metrics are found numerically; they are shown to have volumes of the same order of magnitude. Their contribution to the semiclassical evaluation of the partition function for Euclidean quantum gravity in seven dimensions is evaluated and found to be nontrivial. Consequently, inequivalent differentiable structures should be included in the formulation of sums over histories for quantum gravity.Comment: AmsTex, 23 pages 5 eps figures; replaced figures with ones which are hopefully viewable in pdf forma

    The Energy-Momentum Tensor in Fulling-Rindler Vacuum

    Full text link
    The energy density in Fulling-Rindler vacuum, which is known to be negative "everywhere" is shown to be positive and singular on the horizons in such a fashion as to guarantee the positivity of the total energy. The mechanism of compensation is displayed in detail.Comment: 9 pages, ULB-TH-15/9

    Some Heuristic Semiclassical Derivations of the Planck Length, the Hawking Effect and the Unruh Effect

    Full text link
    The formulae for Planck length, Hawking temperature and Unruh-Davies temperature are derived by using only laws of classical physics together with the Heisenberg principle. Besides, it is shown how the Hawking relation can be deduced from the Unruh relation by means of the principle of equivalence; the deep link between Hawking effect and Unruh effect is in this way clarified.Comment: LaTex file, 6 pages, no figure

    The Heat Kernel Expansion on a Cone and Quantum Fields Near Cosmic Strings

    Full text link
    An asymptotic expansion of the trace of the heat kernel on a cone where the heat coefficients have a delta function behavior at the apex is obtained. It is used to derive the renormalized effective action and total energy of a self-interacting quantum scalar field on the cosmic string space-time. Analogy is pointed out with quantum theory with boundaries. The surface infinities in the effective action are shown to appear and are removed by renormalization of the string tension. Besides, the total renormalized energy turns out to be finite due to cancelation of the known non-integrable divergence in the energy density of the field with a counterterm in the bare string tension.Comment: 20 pages, JINR preprint August, 1993, E2-93-291, LATEX fil

    Localised and nonlocalised structures in nonlinear lattices with fermions

    Full text link
    We discuss the quasiclassical approximation for the equations of motions of a nonlinear chain of phonons and electrons having phonon mediated hopping. Describing the phonons and electrons as even and odd grassmannian functions and using the continuum limit we show that the equations of motions lead to a Zakharov-like system for bosonic and fermionic fields. Localised and nonlocalised solutions are discussed using the Hirota bilinear formalism. Nonlocalised solutions turn out to appear naturally for any choice of wave parameters. The bosonic localised solution has a fermionic dressing while the fermionic one is an oscillatory localised field. They appear only if some constraints on the dispersion are imposed. In this case the density of fermions is a strongly localised travelling wave. Also it is shown that in the multiple scales approach the emergent equation is linear. Only for the resonant case we get a nonlinear fermionic Yajima-Oikawa system. Physical implications are discussed.Comment: 7 pages, LaTeX, no figures. to appear in Europhysics Latter

    Silicon nanoparticles and interstellar extinction

    Get PDF
    To examine a recently proposed hypothesis that silicon nanoparticles are the source of extended red emission (ERE) in the interstellar medium, we performed a detailed modeling of the mean Galactic extinction in the presence of silicon nanoparticles. For this goal we used the appropriate optical constants of nanosized Si, essentially different from those of bulk Si due to quantum confinement. It was found that a dust mixture of silicon nanoparticles, bare graphite grains, silicate core-organic refractory mantle grains and three-layer silicate-water ice-organic refractory grains works well in explaining the extinction and, in addition, results in the acceptable fractions of UV/visible photons absorbed by silicon nanoparticles: 0.071-0.081. Since these fractions barely agree with the fraction of UV/visible photons needed to excite the observed ERE, we conclude that the intrinsic photon conversion efficiency of the photoluminescence by silicon nanoparticles must be near 100%, if they are the source of the ERE.Comment: Latex2e, uses emulateapj.sty (included), multicol.sty, epsf.sty, 6 pages, 3 figures (8 Postscript files), accepted for publication in ApJ Letters, complete Postscript file is also available at http://physics.technion.ac.il/~zubko/eb.html#SNP
    corecore