17 research outputs found

    Settlement Scaling in the Northern Maya Lowlands: Human-Scale Implications

    Get PDF
    Settlement scaling theory predicts that higher site densities lead to increased social interactions that, in turn, boost productivity. The scaling relationship between population and land area holds for several ancient societies, but as demonstrated by the sample of 48 sites in this study, it does not hold for the Northern Maya Lowlands. Removing smaller sites from the sample brings the results closer to scaling expectations. We argue that applications of scaling theory benefit by considering social interaction as a product not only of proximity but also of daily life and spatial layouts. Investigadores de relaciones de escala en asentamientos predicen que densidades altas resultan en el aumento de interacciones social, lo cual estimula productividad. Relaciones de escala entre población y área de asentamiento se manifiestan para varias sociedades antiguas pero, como se ve en nuestra muestra de 48 sitios, no se manifiestan para el norte de la Península de Yucatán. Quitando sitios pequeños produce resultados más semejantes a las expectativas de escala. Aplicaciones de relaciones de escala tienen que considerar interacciones sociales como producto no solamente de proximidad sino de la vida cotidiana y patrones de espacio.</p

    Radial imaging with multipolar magnetic encoding fields

    No full text
    We present reconstruction methods for radial magnetic resonance imaging (MRI) data which were spatially encoded using a pair of orthogonal multipolar magnetic fields for in-plane encoding and parallel imaging. It is shown that a direct method exists in addition to iterative reconstruction. Standard direct projection reconstruction algorithms can be combined with a previously developed direct reconstruction for multipolar encoding fields acquired with Cartesian trajectories. The algorithm is simplified by recasting the reconstruction problem into polar coordinates. In this formulation distortion and aliasing become separate effects. Distortion occurs only along the radial direction and aliasing along the azimuthal direction. Moreover, aliased points are equidistantly distributed in this representation, and, consequently, Cartesian SENSE is directly applicable with highly effective unfolding properties for radio-frequency coils arranged with a radial symmetry. The direct and iterative methods are applied to simulated data to analyze basic properties of the algorithms and for the first time also measured in vivo data are presented. The results are compared to linear spatial encoding using a radial trajectory and quadrupolar encoding using a Cartesian trajectory. The direct reconstruction gives good results for fully sampled datasets. Undersampled datasets, however, show star-shaped artifacts, which are significantly reduced with the iterative reconstruction

    Contrast-free detection of myocardial fibrosis in hypertrophic cardiomyopathy patients with diffusion-weighted cardiovascular magnetic resonance

    Get PDF
    BACKGROUNDS: Previous studies have shown that diffusion-weighted cardiovascular magnetic resonance (DW-CMR) is highly sensitive to replacement fibrosis of chronic myocardial infarction. Despite this sensitivity to myocardial infarction, DW-CMR has not been established as a method to detect diffuse myocardial fibrosis. We propose the application of a recently developed DW-CMR technique to detect diffuse myocardial fibrosis in hypertrophic cardiomyopathy (HCM) patients and compare its performance with established CMR techniques. METHODS: HCM patients (N = 23) were recruited and scanned with the following protocol: standard morphological localizers, DW-CMR, extracellular volume (ECV) CMR, and late gadolinium enhanced (LGE) imaging for reference. Apparent diffusion coefficient (ADC) and ECV maps were segmented into 6 American Heart Association (AHA) segments. Positive regions for myocardial fibrosis were defined as: ADC > 2.0 μm(2)/ms and ECV > 30 %. Fibrotic and non-fibrotic mean ADC and ECV values were compared as well as ADC-derived and ECV-derived fibrosis burden. In addition, fibrosis regional detection was compared between ADC and ECV calculating sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) using ECV as the gold-standard reference. RESULTS: ADC (2.4 ± 0.2 μm(2)/ms) of fibrotic regions (ADC > 2.0 μm(2)/ms) was significantly (p < 0.01) higher than ADC (1.5 ± 0.2 μm(2)/ms) of non-fibrotic regions. Similarly, ECV (35 ± 4 %) of fibrotic regions (ECV > 30 %) was significantly (p < 0.01) higher than ECV (26 ± 2 %) of non-fibrotic regions. In fibrotic regions defined by ECV, ADC (2.2 ± 0.3 μm(2)/ms) was again significantly (p < 0.05) higher than ADC (1.6 ± 0.3 μm(2)/ms) of non-fibrotic regions. In fibrotic regions defined by ADC criterion, ECV (34 ± 5 %) was significantly (p < 0.01) higher than ECV (28 ± 3 %) in non-fibrotic regions. ADC-derived and ECV-derived fibrosis burdens were in substantial agreement (intra-class correlation = 0.83). Regional detection between ADC and ECV of diffuse fibrosis yielded substantial agreement (κ = 0.66) with high sensitivity, specificity, PPV, NPV, and accuracy (0.80, 0.85, 0.81, 0.85, and 0.83, respectively). CONCLUSION: DW-CMR is sensitive to diffuse myocardial fibrosis and is capable of characterizing the extent of fibrosis in HCM patients

    Iron imaging in myocardial infarction reperfusion injury

    No full text
    Restoration of coronary blood flow after a heart attack may lead to reperfusion injury and pathologic iron deposition. Here, the authors perform magnetic susceptibility imaging showing its association with iron in a large animal model of myocardial infarction during wound healing, and showing feasibility in acute myocardial infarction patients undergoing percutaneous coronary intervention
    corecore