212 research outputs found

    Integrated photonic building blocks for next-generation astronomical instrumentation II: the multimode to single mode transition

    Full text link
    There are numerous advantages to exploiting diffraction-limited instrumentation at astronomical observatories, which include smaller footprints, less mechanical and thermal instabilities and high levels of performance. To realize such instrumentation it is imperative to convert the atmospheric seeing-limited signal that is captured by the telescope into a diffraction-limited signal. This process can be achieved photonically by using a mode reformatting device known as a photonic lantern that performs a multimode to single-mode transition. With the aim of developing an optimized integrated photonic lantern, we undertook a systematic parameter scan of devices fabricated by the femtosecond laser direct-write technique. The devices were designed for operation around 1.55 {\mu}m. The devices showed (coupling and transition) losses of less than 5% for F/# \geq 12 injection and the total device throughput (including substrate absorption) as high as 75-80%. Such devices show great promise for future use in astronomy.Comment: 12 pages, 9 figure

    Tuneable quantum interference in a 3D integrated circuit

    Full text link
    Integrated photonics promises solutions to questions of stability, complexity, and size in quantum optics. Advances in tunable and non-planar integrated platforms, such laser-inscribed photonics, continue to bring the realisation of quantum advantages in computation and metrology ever closer, perhaps most easily seen in multi-path interferometry. Here we demonstrate control of two-photon interference in a chip-scale 3D multi-path interferometer, showing a reduced periodicity and enhanced visibility compared to single photon measurements. Observed non-classical visibilities are widely tunable, and explained well by theoretical predictions based on classical measurements. With these predictions we extract a Fisher information approaching a theoretical maximum, demonstrating the capability of the device for quantum enhanced phase measurements.Comment: 11 pages, 24 figure

    Multiband processing of multimode light: combining 3D photonic lanterns with waveguide Bragg gratings

    Full text link
    The first demonstration of narrowband spectral filtering of multimode light on a 3D integrated photonic chip using photonic lanterns and waveguide Bragg gratings is reported. The photonic lanterns with multi-notch waveguide Bragg gratings were fabricated using the femtosecond direct-write technique in boro-aluminosilicate glass (Corning, Eagle 2000). Transmission dips of up to 5 dB were measured in both photonic lanterns and reference single-mode waveguides with 10.4-mm-long gratings. The result demonstrates efficient and symmetrical performance of each of the gratings in the photonic lantern. Such devices will be beneficial to space-division multiplexed communication systems as well as for units for astronomical instrumentation for suppression of the atmospheric telluric emission from OH lines.Comment: 5 pages, 4 figures, accepted to Laser & Photonics Review

    Generation of heralded single photons beyond 1100 nm by spontaneous four-wave mixing in a side-stressed femtosecond laser-written waveguide

    Full text link
    We demonstrate a monolithically integrable heralded photon source in a femtosecond laser direct written glass waveguide. The generation of photon pairs with a wide wavelength separation requires a concomitant large birefringence in the normal dispersion regime. Here, by incorporation of side-stress tracks, we produce a waveguide with a birefringence of 1.64× 1041.64\times~10^{-4} and propagation loss as low as 0.21 dB/cm near 980~nm. We measure photon pairs with 300~nm wavelength separation at an internal generation rate exceeding 5.05×1065.05\times10^6/s. The second order correlations indicate that the generated photon pairs are in a strongly non-classical regime.Comment: 5 pages, 5 figure

    Fabrication of high quality sub-micron Au gratings over large areas with pulsed laser interference lithography for SPR sensors

    Full text link
    Metallic gratings were fabricated using high energy laser interference lithography with a frequency tripled Nd:YAG nanosecond laser. The grating structures were first recorded in a photosensitive layer and afterwards transferred to an Au film. High quality Au gratings with a period of 770 nm and peak-to-valley heights of 20-60 nm exhibiting plasmonic resonance response were successfully designed, fabricated and characterized.Comment: 10 pages, 7 figure

    On-chip generation of heralded photon-number states

    Get PDF
    Beyond the use of genuine monolithic integrated optical platforms, we report here a hybrid strategy enabling on-chip generation of configurable heralded two-photon states. More specifically, we combine two different fabrication techniques, \textit{i.e.}, non-linear waveguides on lithium niobate for efficient photon-pair generation and femtosecond-laser-direct-written waveguides on glass for photon manipulation. Through real-time device manipulation capabilities, a variety of path-coded heralded two-photon states can be produced, ranging from product to entangled states. Those states are engineered with high levels of purity, assessed by fidelities of 99.5±\pm8\% and 95.0±\pm8\%, respectively, obtained via quantum interferometric measurements. Our strategy therefore stands as a milestone for further exploiting entanglement-based protocols, relying on engineered quantum states, and enabled by scalable and compatible photonic circuits

    High-performance 3D waveguide architecture for astronomical pupil-remapping interferometry

    Full text link
    The detection and characterisation of extra-solar planets is a major theme driving modern astronomy, with the vast majority of such measurements being achieved by Doppler radial-velocity and transit observations. Another technique -- direct imaging -- can access a parameter space that complements these methods, and paves the way for future technologies capable of detailed characterization of exoplanetary atmospheres and surfaces. However achieving the required levels of performance with direct imaging, particularly from ground-based telescopes which must contend with the Earth's turbulent atmosphere, requires considerable sophistication in the instrument and detection strategy. Here we demonstrate a new generation of photonic pupil-remapping devices which build upon the interferometric framework developed for the {\it Dragonfly} instrument: a high contrast waveguide-based device which recovers robust complex visibility observables. New generation Dragonfly devices overcome problems caused by interference from unguided light and low throughput, promising unprecedented on-sky performance. Closure phase measurement scatter of only 0.2\sim 0.2^\circ has been achieved, with waveguide throughputs of >70%> 70\%. This translates to a maximum contrast-ratio sensitivity (between the host star and its orbiting planet) at 1λ/D1 \lambda/D (1σ\sigma detection) of 5.3×1045.3 \times 10^{-4} (when a conventional adaptive-optics (AO) system is used) or 1.8×1041.8 \times 10^{-4} (for typical `extreme-AO' performance), improving even further when random error is minimised by averaging over multiple exposures. This is an order of magnitude beyond conventional pupil-segmenting interferometry techniques (such as aperture masking), allowing a previously inaccessible part of the star to planet contrast-separation parameter space to be explored

    Hybrid photonic circuit for multiplexed heralded single photons

    Get PDF
    A key resource for quantum optics experiments is an on-demand source of single and multiple photon states at telecommunication wavelengths. This letter presents a heralded single photon source based on a hybrid technology approach, combining high efficiency periodically poled lithium niobate waveguides, low-loss laser inscribed circuits, and fast (>1 MHz) fibre coupled electro-optic switches. Hybrid interfacing different platforms is a promising route to exploiting the advantages of existing technology and has permitted the demonstration of the multiplexing of four identical sources of single photons to one output. Since this is an integrated technology, it provides scalability and can immediately leverage any improvements in transmission, detection and photon production efficiencies.Comment: 5 pages, double column, 3 figure

    Three-dimensional imaging of direct-written photonic structures

    Full text link
    Third harmonic generation microscopy has been used to analyze the morphology of photonic structures created using the femtosecond laser direct-write technique. Three dimensional waveguide arrays and waveguide-Bragg gratings written in fused-silica and doped phosphate glass were investigated. A sensorless adaptive optical system was used to correct the optical aberrations occurring in the sample and microscope system, which had a lateral resolution of less than 500 nm. This non-destructive testing method creates volume reconstructions of photonic devices and reveals details invisible to other linear microscopy and index profilometry techniques.Comment: 8 pages, 3 color figures, 2 hyper-linked animation

    Periodic refractive index modifications inscribed in polymer optical fibre by focussed IR femtosecond pulses

    Get PDF
    Focussed femtosecond laser pulses were used to inscribe a periodic array of modifications in the core of a polymer optical fibre. Structural and refractive-index modifications have been observed at different pulse energies using DIC microscopy
    corecore