8 research outputs found
GeoHealth Thai Platform: towards a network to gather expertise, knowledge and resources in health geography
International audienceDriven by the recent awareness of the magnitude of climate and environmental changes and their impact on human health, interdisciplinary approaches are increasingly being implemented to understand health inequalities and the dynamics of diseases. Although the availability of data is growing, researchers are facing difficulties in identifying and accessing relevant data and, above all, in using these data, resulting in a paradoxically limited use of geographical information.The GeoHealth Thai Platform project aims to promote geographical and environmental approaches in the understanding of health inequalities through the use of Geographic Information Systems and Remote Sensing techniques. It proposes to address the difficulties encountered by many individual researchers by:•gathering experts and researchers together during workshops, in order to define the needs and identify the barriers to be solved; •training and providing expertise to researchers for the use of Geographic Information Systems and Remote Sensing techniques; •building an open geocatalogue to facilitate the access to spatial data.This project will be supported by a dedicated website, which will integrate the catalogue of geo-referenced data, together with online resources (documents, courses and tutorials). This poster will present the geocatalogue, at the heart of the project, as well as current and future project activities.GeoHealth Thai Platform is funded by Franco-Thai Cooperation Program in Higher Education and Research 2013-2014
Relationships between Meteorological Parameters and Particulate Matter in Mae Hong Son Province, Thailand
Meteorological parameters play an important role in determining the prevalence of ambient particulate matter (PM) in the upper north of Thailand. Mae Hong Son is a province located in this region and which borders Myanmar. This study aimed to determine the relationships between meteorological parameters and ambient concentrations of particulate matter less than 10 µm in diameter (PM10) in Mae Hong Son. Parameters were measured at an air quality monitoring station, and consisted of PM10, carbon monoxide (CO), ozone (O3), and meteorological factors, including temperature, rainfall, pressure, wind speed, wind direction, and relative humidity (RH). Nine years (2009⁻2017) of pollution and climate data obtained from the Thai Pollution Control Department (PCD) were used for analysis. The results of this study indicate that PM10 is influenced by meteorological parameters; high concentration occurred during the dry season and northeastern monsoon seasons. Maximum concentrations were always observed in March. The PM10 concentrations were significantly related to CO and O3 concentrations and to RH, giving correlation coefficients of 0.73, 0.39, and −0.37, respectively (p-value < 0.001). Additionally, the hourly PM10 concentration fluctuated within each day. In general, it was found that the reporting of daily concentrations might be best suited to public announcements and presentations. Hourly concentrations are recommended for public declarations that might be useful for warning citizens and organizations about air pollution. Our findings could be used to improve the understanding of PM10 concentration patterns in Mae Hong Son and provide information to better air pollution measures and establish a warning system for the province
Analyzing temperature, humidity, and precipitation trends in six regions of Thailand using innovative trend analysis
Abstract The change of temperature and weather parameters is a major concern affecting sustainable development and impacting various sectors, such as agriculture, tourism, and industry. Changing weather patterns and their impact on water resources are important climatic factors that society is facing. In Thailand, climatological features such as ambient temperature, relative humidity, and precipitation play a substantial role in affecting extreme weather events, which cause damage to the economy, agriculture, tourism, and livelihood of people. To investigate recent serious changes in annual trends of temperature, relative humidity, and precipitation in Thailand, this study used the Mann–Kendall (MK) test and innovative trend analysis (ITA) methods. The MK test showed that all six regions had an upward trend in temperature and humidity index (humidex, how hot the weather feels to the average person), while relative humidity and precipitation showed both upward and downward trends across different regions. The ITA method further confirmed the upward trend in temperature and humidex and showed that most data points fell above the 1:1 line. However, the upward trend in most variables was not significant at the 5% level. The southern and eastern regions showed a significant upward trend in relative humidity and humidex at a 5% level of significance according to the MK test. The output of this study can help in the understanding of weather variations and predict future situations and can be used for adaptation strategies
Occurrence, distribution, and ecological risk assessment of heavy metals in Chao Phraya River, Thailand
Abstract Understanding heavy metals in rivers is crucial, as their presence and distribution impact water quality, ecosystem health, and human well-being. This study examined the presence and levels of nine heavy metals (Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, and Zn) in 16 surface water samples along the Chao Phraya River, identifying Fe, Mn, Zn, and Cr as predominant metals. Although average concentrations in both rainy and dry seasons generally adhered to WHO guidelines, Mn exceeded these limits yet remained within Thailand’s acceptable standards. Seasonal variations were observed in the Chao Phraya River, and Spearman’s correlation coefficient analysis established significant associations between season and concentrations of heavy metals. The water quality index (WQI) demonstrated varied water quality statuses at each sampling point along the Chao Phraya River, indicating poor conditions during the rainy season, further deteriorating to very poor conditions in the dry season. The hazard potential index (HPI) was employed to assess heavy metal contamination, revealing that during the dry season in the estuary area, the HPI value exceeded the critical threshold index, indicating the presence of heavy metal pollution in the water and unsuitable for consumption. Using the species sensitivity distribution model, an ecological risk assessment ranked the heavy metals’ HC5 values as Pb > Zn > Cr > Cu > Hg > Cd > Ni, identifying nickel as the most detrimental and lead as the least toxic. Despite Cr and Zn showing a moderate risk, and Cu and Ni posing a high risk to aquatic organisms, the main contributors to ecological risk were identified as Cu, Ni, and Zn, suggesting a significant potential ecological risk in the Chao Phraya River’s surface water. The results of this study provide fundamental insights that can direct future actions in preventing and managing heavy metal pollution in the river ecosystem
The Elemental Characteristics and Human Health Risk of PM2.5 during Haze Episode and Non-Haze Episode in Chiang Rai Province, Thailand
Fine particle matter (PM2.5) was directly related to seasonal weather, and has become the influencing factor of air quality that is harmful for human health in Chiang Rai province. The aims were determining the elemental composition in PM2.5 and human health risk in haze (March 2021) and non-haze episodes (July–August 2021). Nine elements in PM2.5 were measured by using an Atomic Absorption Spectrophotometer, and an enrichment factor was used to identify the emission source. The results showed that the average concentration of PM2.5 was 63.07 μg/m3 in haze episodes, and 25.00 μg/m3 in a non-haze episode. The maximum concentration was 116.7 μg/m3 in March. The majority of elements originated from anthropogenic sources. In haze episodes, PM2.5 mean concentration was approximately 4.2 times that of the WHO guidelines (15 μg/m3 24 h), and 1.3 times that of the Thai Ambient Air Quality Standard (50 μg/m3). The analysis of backward air mass trajectory showed that transboundary and local sources significantly influenced PM2.5 at the monitoring site in the sampling period. In the health risk assessment, the non-carcinogenic risk of Cd was the highest, with a Hazard Quotient (HQ) of 0.048, and the cancer risk of Cr was classified as the highest cancer risk, with the values of 1.29 × 10−5, higher than the minimum acceptable level
Biomarker-Determined Nonylphenol Exposure and Associated Risks in Children of Thailand, Indonesia, and Saudi Arabia
Nonylphenol (NP) is an endocrine disruptor and environmental contaminant. Yet, data on individual body burdens and potential health risks in humans, especially among children, are scarce. We analyzed two specific urinary NP metabolites, hydroxy-NP (OH-NP) and oxo-NP. In contrast to parent NP, OH-NP has a much higher urinary excretion fraction (Fue), and both are insusceptible to external contamination. We investigated spot urine samples from school children of Thailand (n = 104), Indonesia (n = 89), and Saudi Arabia (n = 108) and could quantify OH-NP in 100% of Indonesian and Saudi children (median concentrations: 8.12 and 8.57 mu g/L) and in 76% of Thai children (1.07 mu g/L). Median oxo-NP concentrations were 0.95, 1.10, and < 0.25 mu g/L, respectively, in line with its lower Fue. Median daily NP intakes (DIs), back-calculated from urinary OH-NP concentrations, were significantly higher in Indonesia and Saudi Arabia [0.47 and 0.36 mu g/(kg bw & BULL;d), respectively] than in Thailand [0.06 mu g/(kg bw & BULL;d)]. Maximum DIs were close to the preliminary tolerable DI of 5 mu g/(kg bw & BULL;d) from the Danish Environmental Protection Agency. Dominant sources of exposure or relevant exposure pathways could not be readily identified by questionnaire analyses and also potentially varied by region. The novel biomarkers provide long-needed support to the quantitative exposure and risk assessment of NP.N