33 research outputs found
Mechanical Bonds and Topological Effects in Radical Dimer Stabilization
While mechanical bonding stabilizes tetrathiafulvalene (TTF) radical dimers, the question arises: what role does topology play in catenanes containing TTF units? Here, we report how topology, together with mechanical bonding, in isomeric [3]- and doubly interlocked [2]catenanes controls the formation of TTF radical dimers within their structural frameworks, including a ring-in-ring complex (formed between an organoplatinum square and a {2+2} macrocyclic polyether containing two 1,5-dioxynaphthalene (DNP) and two TTF units) that is topologically isomeric with the doubly interlocked [2]catenane. The separate TTF units in the two {1+1} macrocycles (each containing also one DNP unit) of the isomeric [3]catenane exhibit slightly different redox properties compared with those in the {2+2} macrocycle present in the [2]catenane, while comparison with its topological isomer reveals substantially different redox behavior. Although the stabilities of the mixed-valence (TTF2)^(•+) dimers are similar in the two catenanes, the radical cationic (TTF^(•+))_2 dimer in the [2]catenane occurs only fleetingly compared with its prominent existence in the [3]catenane, while both dimers are absent altogether in the ring-in-ring complex. The electrochemical behavior of these three radically configurable isomers demonstrates that a fundamental relationship exists between topology and redox properties
An inclusive Research and Education Community (iREC) model to facilitate undergraduate science education reform
Funding: This work was supported by Howard Hughes Medical Institute grants to DIH is GT12052 and MJG is GT15338.Over the last two decades, there have been numerous initiatives to improve undergraduate student outcomes in STEM. One model for scalable reform is the inclusive Research Education Community (iREC). In an iREC, STEM faculty from colleges and universities across the nation are supported to adopt and sustainably implement course-based research – a form of science pedagogy that enhances student learning and persistence in science. In this study, we used pathway modeling to develop a qualitative description that explicates the HHMI Science Education Alliance (SEA) iREC as a model for facilitating the successful adoption and continued advancement of new curricular content and pedagogy. In particular, outcomes that faculty realize through their participation in the SEA iREC were identified, organized by time, and functionally linked. The resulting pathway model was then revised and refined based on several rounds of feedback from over 100 faculty members in the SEA iREC who participated in the study. Our results show that in an iREC, STEM faculty organized as a long-standing community of practice leverage one another, outside expertise, and data to adopt, implement, and iteratively advance their pedagogy. The opportunity to collaborate in this manner and, additionally, to be recognized for pedagogical contributions sustainably engages STEM faculty in the advancement of their pedagogy. Here, we present a detailed pathway model of SEA that, together with underpinning features of an iREC identified in this study, offers a framework to facilitate transformations in undergraduate science education.Peer reviewe
Modeling Decision-Making in Schizophrenia: Associations Between Computationally Derived Risk Propensity and Self-Reported Risk Perception
Schizophrenia is associated with reduced reward pursuit during uncertain-risk decision-making; however, putative mechanisms subserving this disadvantageous behavior, and contributions of cognition and relevant traits, remain poorly understood. Participants (30 schizophrenia/schizoaffective disorder [SZ]; 30 controls) completed the Balloon Analogue Risk Task (BART). Computational modeling captured subprocesses of uncertain-risk decision-making: Risk Propensity, Prior Belief of Success, Learning Rate, and Behavioral Consistency. Key factors of cognition, risk-specific processes (i.e., Perceived Risks and Expected Benefit of Risks), and non-risk specific personality traits (i.e., defeatist beliefs; hedonic tone) are examined for relationships with Risk Propensity to determine what contributes to group and individual differences in risky reward pursuit. On the BART, the SZ group exhibited lower Risk Propensity, despite higher Prior Beliefs of Success and comparable Learning Rates. In the full sample, Risk Propensity and Prior Beliefs were positively and negatively related to IQ, respectively. Linear models predicting Risk Propensity with self-reported Perceived Risks revealed interactions between group and Perceived Risk, in addition to IQ and Perceived Risk. Specifically, in both the SZ group and individuals with below median IQ, lower Perceived Risks was related to lower Risk Propensity. Thus, within these groups, lower perception of real-world financial risks was associated with less advantageous pursuit of uncertain-risk rewards on the BART. Findings may suggest decreased risk-taking on the BART in SZ reflects risk imperception: The failure to accurately perceive and leverage relevant information to guide advantageous pursuit of risky rewards
Combined IL-21 and Low-Dose IL-2 therapy induces anti-tumor immunity and long-term curative effects in a murine melanoma tumor model
Abstract Background In vivo studies have recently demonstrated that interleukin 21 (IL-21) enhances the anti-tumor function of T-cells and NK cells in murine tumor models, and the combined use of IL-21 and IL-15 has resulted in prolonged tumor regression and survival in mice with previously established tumors. However, the combined anti-tumor effects of IL-21 and low dose IL-2 have not been studied even though IL-2 has been approved for human use, and, at low dose administration, stimulates the proliferation of memory T cells, and does not significantly increase antigen-induced apoptosis or regulatory T cell (Treg) expansion. This study examined whether recombinant IL-21 alone or in combination with low-dose IL-2 could improve the in vivo anti-tumor function of naïve, tumor-antigen specific CD8+ T cells in a gp10025–33 T cell receptor transgenic pmel murine melanoma model. Methods Congenic C57BL/6 (Ly5.2) mice bearing subcutaneous B16F10 melanoma tumors were sublethally irradiated to induce lymphopenia. After irradiation naive pmel splenocytes were adoptively transferred, and mice were immunized with bone marrow-derived dendritic cells pulsed with human gp10025–33 (hgp10025–33). Seven days after vaccination groups of mice received 5 consecutive days of intraperitoneal administration of IL-2 alone (20 × 103 IU), IL-21 alone (20 μg) or IL-21 and IL-2. Control animals received no cytokine therapy. Results IL-21 alone and IL-2 alone both delayed tumor progression, but only IL-21 significantly augmented long-term survival (20%) compared to the control group. However, combination therapy with IL-21 and IL-2 resulted in the highest long-term (>150 days) tumor-free survival frequency of 46%. Animals that were tumor-free for > 150 days demonstrated tumor-specific protection after rechallenge with B16F10 melanoma cells. At peak expansion (21 days post vaccination), the combination of IL-21 plus IL-2 resulted in a 2- to 3-fold higher absolute number of circulating tumor antigen-specific pmel CD8+ T cells than was stimulated by IL-2 or IL-21 alone. Pmel CD8+ T cells were predominantly partitioned into central memory (CD62L+/CD127+) or effector-memory (CD62L-/CD127+) phenotypes by day 28-post vaccination in IL-21 + IL-2 treated mice. Conclusion These observations support the potential use of IL-21 and low-dose IL-2 therapy in combination with a tumor-antigen vaccine and lymphopenic conditioning in future cancer clinical trials to maintain high numbers of anti-tumor memory CD8+ T cells with the potential to sustain long term tumor regression and survival.</p
Recommended from our members