631 research outputs found

    Use of Mobile Technology for Teacher Training

    Get PDF

    Proteomic profiling of neuronal mitochondria reveals modulators of synaptic architecture

    Get PDF
    Abstract Background Neurons are highly polarized cells consisting of three distinct functional domains: the cell body (and associated dendrites), the axon and the synapse. Previously, it was believed that the clinical phenotypes of neurodegenerative diseases were caused by the loss of entire neurons, however it has recently become apparent that these neuronal sub-compartments can degenerate independently, with synapses being particularly vulnerable to a broad range of stimuli. Whilst the properties governing the differential degenerative mechanisms remain unknown, mitochondria consistently appear in the literature, suggesting these somewhat promiscuous organelles may play a role in affecting synaptic stability. Synaptic and non-synaptic mitochondrial subpools are known to have different enzymatic properties (first demonstrated by Lai et al., 1977). However, the molecular basis underpinning these alterations, and their effects on morphology, has not been well documented. Methods The current study has employed electron microscopy, label-free proteomics and in silico analyses to characterize the morphological and biochemical properties of discrete sub-populations of mitochondria. The physiological relevance of these findings was confirmed in-vivo using a molecular genetic approach at the Drosophila neuromuscular junction. Results Here, we demonstrate that mitochondria at the synaptic terminal are indeed morphologically different to non-synaptic mitochondria, in both rodents and human patients. Furthermore, generation of proteomic profiles reveals distinct molecular fingerprints – highlighting that the properties of complex I may represent an important specialisation of synaptic mitochondria. Evidence also suggests that at least 30% of the mitochondrial enzymatic activity differences previously reported can be accounted for by protein abundance. Finally, we demonstrate that the molecular differences between discrete mitochondrial sub-populations are capable of selectively influencing synaptic morphology in-vivo. We offer several novel mitochondrial candidates that have the propensity to significantly alter the synaptic architecture in-vivo. Conclusions Our study demonstrates discrete proteomic profiles exist dependent upon mitochondrial subcellular localization and selective alteration of intrinsic mitochondrial proteins alters synaptic morphology in-vivo

    A paediatric bone index derived by automated radiogrammetry

    Get PDF
    Hand radiographs are obtained routinely to determine bone age of children. This paper presents a method that determines a Paediatric Bone Index automatically from such radiographs. The Paediatric Bone Index is designed to have minimal relative standard deviation (7.5%), and the precision is determined to be 1.42%. Introduction We present a computerised method to determine bone mass of children based on hand radiographs, including a reference database for normal Caucasian children. Methods Normal Danish subjects (1,867), of ages 7-17, and 531 normal Dutch subjects of ages 5-19 were included. Historically, three different indices of bone mass have been used in radiogrammetry all based on A = pi TW(1 - T/W), where T is the cortical thickness and W the bone width. The indices are the metacarpal index A/W-2, DXR-BMD=A/W, and Exton-Smith's index A/(WL), where L is the length of the bone. These indices are compared with new indices of the form A/((WLb)-L-a), and it is argued that the preferred index has minimal SD relative to the mean value at each bone age and sex. Finally, longitudinal series of X-rays of 20 Japanese children are used to derive the precision of the measurements. Results The preferred index is A/((WL0.33)-L-1.33), which is named the Paediatric Bone Index, PBI. It has mean relative SD 7.5% and precision 1.42%. Conclusions As part of the BoneXpert method for automated bone age determination, our method facilitates retrospective research studies involving validation of the proposed index against fracture incidence and adult bone mineral densit

    The Human Serum Metabolome

    Get PDF
    Continuing improvements in analytical technology along with an increased interest in performing comprehensive, quantitative metabolic profiling, is leading to increased interest pressures within the metabolomics community to develop centralized metabolite reference resources for certain clinically important biofluids, such as cerebrospinal fluid, urine and blood. As part of an ongoing effort to systematically characterize the human metabolome through the Human Metabolome Project, we have undertaken the task of characterizing the human serum metabolome. In doing so, we have combined targeted and non-targeted NMR, GC-MS and LC-MS methods with computer-aided literature mining to identify and quantify a comprehensive, if not absolutely complete, set of metabolites commonly detected and quantified (with today's technology) in the human serum metabolome. Our use of multiple metabolomics platforms and technologies allowed us to substantially enhance the level of metabolome coverage while critically assessing the relative strengths and weaknesses of these platforms or technologies. Tables containing the complete set of 4229 confirmed and highly probable human serum compounds, their concentrations, related literature references and links to their known disease associations are freely available at http://www.serummetabolome.ca

    Metabolite profiling of Dioscorea (yam) species reveals underutilised biodiversity and renewable sources for high-value compounds

    Get PDF
    Yams (Dioscorea spp.) are a multispecies crop with production in over 50 countries generating ~50 MT of edible tubers annually. The long-term storage potential of these tubers is vital for food security in developing countries. Furthermore, many species are important sources of pharmaceutical precursors. Despite these attributes as staple food crops and sources of high-value chemicals, Dioscorea spp. remain largely neglected in comparison to other staple tuber crops of tropical agricultural systems such as cassava (Manihot esculenta) and sweet potato (Ipomoea batatas). To date, studies have focussed on the tubers or rhizomes of Dioscorea, neglecting the foliage as waste. In the present study metabolite profiling procedures, using GC-MS approaches, have been established to assess biochemical diversity across species. The robustness of the procedures was shown using material from the phylogenetic clades. The resultant data allowed separation of the genotypes into clades, species and morphological traits with a putative geographical origin. Additionally, we show the potential of foliage material as a renewable source of high-value compounds
    • …
    corecore